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ABSTRACT 
An important problem in power system operation is to 
determine the operating reserve in order to reduce the risk 
of not supplying the load in consequence of 
contingencies. In literature the so-called well being model 
has been suggested to solve it. In the paper a genetic 
algorithm is used to overcome the computational burden 
due to the model complexity and to find the optimal 
solution. The results obtained on a test system show the 
effectiveness of the proposed approach. 
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1.  Introduction 
A power system operator must constantly assess the 
required spinning reserve in order to operate the system as 
securely and as economically as possible. Security is 
achieved by carrying extra operating capacity at all time 
to supply loads in case of unplanned events, such as 
unforeseen load changes, sudden generation and line 
outages or any other contingency which results in loss of 
generation capacity. 
In today’s electric power industry, the spinning reserve 
requirements are usually based on deterministic criteria. 
The disadvantage of this approach is that it does not take 
into account the occurrence probability of a contingency 
that actually influences the power system risk.  
Conversely, usage of probabilistic techniques would 
permit the capture of the random nature of system 
components and load behaviour in a consistent manner. 
Despite of the obvious disadvantage of deterministic 
approaches, there is considerable reluctance to apply 
probabilistic techniques to assess the spinning reserve 
requirement. 
Other authors have already found a compromise between 
the deterministic and the probabilistic methods known in 
literature as “system well-being” [1]. In consequence of a 
contingency the system may reside in health, margin or at 
risk state in terms of the degree to which the reliability 
constraints are satisfied, i.e. power not delivered to the 
load [1]. The probabilites associated with the different 
contingencies are evaluated and the system well-being 

indices can be calculated from these probabilities. Hence 
the healthy, marginal and at risk state probabilities are the 
probability of the composite system to be operating in the 
healthy, marginal and at risk states respectively.  
Since system health, margin and risk probabilities are 
influenced by the amount and by the different type of 
operating reserve. Previous papers, based on the above 
well-being approach, have presented a mathematical 
framework in order to determine the reserve requirements 
to have an acceptable risk probability. This framework 
includes the computational requirements in both spinning 
and supplemental reserves. Non-spinning reserves, such 
as rapid start gas turbine units and hot reserve units, are 
assessed using the concepts of area risk curves, in which 
the respective lead times play one of the key roles in the 
analysis [1], [2]. The same concept is used for the 
interruptible load interpreted as a part of the operating 
reserve. The system area risk curve will then depend also 
on the instant and duration of interruption [3]. 
The goal of the present paper is to determine the optimal 
mix of operating reserve units (rapid start, hot reserve 
units, interruptible loads) in order to obtain the desired 
reliability degree at the minimum cost. This optimal mix 
is the solution of a complex mathematical optimisation 
problem, with integer variables. The exact solution to the 
problem can be obtained by complete enumeration, which 
cannot be applied to realistic power systems, due to the 
excessive computational time requirements. In order to 
decrease the computational time performing an 
appropriate searching procedure, in the paper a Genetic 
Algorithm has been used [4].  
The paper is structured as follows: the well being method 
is recalled, the optimisation model is formulated and the 
proposed Genetic Algorithm to solve is illustrated. The 
results on a significant test system shows the goodness of 
the proposed method. 

2.  The Well-Being Model 
The reliability criteria used in the well being model 
structure are either deterministic or probabilistic. The 
well-being analysis technique recognizes that the whole 
system operating states created by incorporating the 
system deterministic criteria can be categorized as being 
healthy, marginal or at risk. In this way, probabilistic 
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concepts can be incorporated in a deterministic technique, 
thereby providing more information to system planners 
and operators about the system performance. This concept 
is illustrated in Fig. 1. In the healthy state all the 
equipment and security constraints are within limits while 
supplying the total system demand. In this state, there is 
sufficient reserve margin such as any single contingency 
can be tolerated without violating the limits. In the 
marginal state the operating constraints are within limits, 
but some specific single contingencies will result in being 
a limit being violated due to insufficient reserve margin. 
The operating constraints are violated in the risk state and 
the system may be required to shed load in this state. The 
total system states are so categorized into the three states, 
which can be expressed by Eq. (1) as follows: 
 1=++ rmh PPP   (1) 
where Ph, Pm and Pr are the probabilities of the system 
being in the healthy, marginal and risk states, 
respectively.  
The capacity of spinning reserve must be scheduled in 
such a way that the probability of system being in the risk 
state cannot be greater than a specified system risk that is 
determined by system operators. 
 rr SPP ≤  (2) 

where  rSP  is system specified risk. 
The spinning reserve is the rotating capacity in excess of 
the system load which is synchronized and immediately 
available to supply load. Non- synchronized or stand-by 
generation can be generally classified as rapid start and 
hot reserve units [1] [3].  
Generating unit are committed for a specified time period 
during which additional generation can be made available 
after a time delay. The lead time required before a 
generating unit can be put into service depends on a 
number of factors including the type of unit in question. 
Operating reserve assessment is historically done using 
deterministic approaches which do not assess the risk of 
the system and ignore the probabilistic or stochastic 
nature of system behaviour and component failure. 

 
Figure 1 – System state in the well being model 
 
In order to determine the probability that the system is in 
a successful or failed states a probabilistic model of 
generation unit are necessary. Starting from this 
knowledge the risk of the system to fall in so non healthy 
state is possible, building the risk curve as a function of 
generation and system reserves [1]. 
 
 
 

2.1 Generating Unit And Interruptible Load 
Models 
Operating reserve can be generally divided into the two 
classes of unit reserve and system reserve. Unit reserve 
may be in the form of spinning or stand-by units. Figure 2 
shows a modified two-state model [1] used in operating 
reserve assessment for spinning units. It is assumed that 
the system lead time is relatively short and therefore the 
probability of repair occurring during the small lead time 
is negligible. Under this condition the time dependent 
probabilities of the operating and failed states for a unit 
can be approximated by (3) and (4), respectively, at a 
given delay time of T.  

( ) ORRTfailedP =λ=  (3) 
( ) ToperatingP λ−=1   (4) 

 
Figure 2 - Two-state model of a generating unit used in 

operating reserve evaluation. 

Clearly, � is the unit failure rate and ORR is the outage 
replacement rate [1]. The two-state model can further be 
modified by including postponable outages. In this case 
the total unit failure rate is reduced by the degree of 
postponability β. The probability of finding the unit in the 
failed state at a given time T in the future can be obtained 
using (5) [1]. 

( ) ( ) ( ) 101 ≤≤−=−= βλβλβλ TfailedP    (5) 

Rapid start and hot reserve units are represented by four 
and five state models as shown in Figs 3.a and 3.b 
respectively [1, 3]. The time dependent state probabilities 
are evaluated using a matrix multiplication technique [5]. 
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where 
[P’(t)]= vector of state probabilities at time t, 
[P(t)]= vector of initial probabilities, 
[A]= stochastic transitional probability matrix, 
m= number of time steps used in the discretization 
process. 

 
The vector of initial probabilities for the rapid start and 
hot reserve units are given in (7) and (8) respectively. 

( )[ ] ( ) ( )[ ]rrr tPtPtP 41 00=   (7) 

( )[ ] ( ) ( )[ ]000 41 hhh tPtPtP =  (8) 
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Figure 3 Four and five state models for rapid start and hot 
reserve units respectively. 

where: 

( )[ ]
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The probabilities of finding the rapid start and hot reserve 
units on outage given that a demand has occurred are 
given by (11) and (12) respectively. The unit availabilities 
are calculated using the complementary values of  (11) 
and (12) [1]. 
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Interruptible load can be modelled as an equivalent 
generating unit with zero failure rate or considered as a 
load variation as shown in Figs 4 and 5 respectively 
where τ �is the load interruption time [1, 5]. 

 
Figure 4 Equivalent unit approach model for interruptible 

load. 

 
Figure 5 Load variation approach model for interruptible 

load. 

2.2 Risk curve 
A unit commitment is necessary to assure an adequate 
level of generation reliability  taking into account, firstly, 
probabilistic model of generation unit and then the load 
forecast uncertainty. 

The unit commitment scheduling is started by committing 
a number of units starting with the most economic units. 
The initial number of committed units is therefore the 
minimum number of units required to satisfy (13). 

�
=

>
NO

i 1
L  iG   (13) 

where NO is the number of on-line committed unit and Gi 
is the maximum capacity of unit i. 
The Figure 6-a shows a possible area risk curve for a 
system with no stand-by units and interruptible load. This 
area risk curve represents the behavior of the system 
when only spinning and synchronized units (on-line units) 
are considered in the reserve calculations. A typical area 
risk curve for a system with rapid start, hot reserve units 
and interruptible load is shown in the Fig 6 b [1]. 

 
(a) 

 
(b) 

Figure 6 Load variation approach model for interruptible 
load. 

The system risk can be calculated by simulating all 
possible contingencies. Evaluation can require a 
considerable computation time specially for systems with 
a large number of committed units. In order to decrease 
the computational time the partial system risk at each 
period is determined using a capacity outage probability 
table (COPT) [1, 6]. Using the initial number of 
committed units the system risk is calculated in the 
presence of rapid start units, interruptible load and hot 
reserve units. 

iviiiiiir RRRRP +++=  (14) 
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The calculated system risk is compared with the specified 
risk as (2). 
If (2) is not satisfied, an additional unit is added to the 
already on-line committed units and the above procedure 
is continued until the system risk is satisfied. In the 

   (a)                                                       (b) 
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sequence, firstly rapid start unit are considered, then 
interruptible load and finally hot reserve unit. This is due 
to the different lead time of each kind of reserve. 
Once the system risk is satisfied, the healthy and marginal 
state probabilities are calculated as follows.  
The total decreasing risk due to the inclusion of stand-by 
unit and interruptible loads is calculated as (16) [1]: 

�� −=
tata

r dtRFdtRFTD
0

2
0

1 )()( ; rrr PPTD −= 1  (16) 

P1h is determined from a COPT made of NO on-line 
committed units. The COPT represented in a descending 
order is shown in Table 1. The failed and operating state 
probabilities are calculated as follows [1, 6]. 

( ) a
i
rsu tfailedP ×≅ λ  (17) 

where  
i
rsuλ  is the failure rate oh ith spinning unit 

ta  is the lead time of additional generating unit in       the 
sistem. 
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Table 1 - COPT of the NO on-line spinning units. 

Capacity in service Individual probability 
C1 P1 

C2 P2 

. . 

. . 
0 NO

P 2  

 
The healthy state probability, P1h, cannot be calculated 
using the COPT and is determined using a contingency 
enumeration technique. For a given contingency c it is 
assumed that  m1 set of units are in service and m2 set of 
units are out of service. 

NOmm =+ 21  (21) 
The probability of contingency c is calculated as (22). 
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(�= |1 ch PP  if equation  23 is satisfied) (24) 

rhm PPP 111 1 −−=  (25) 
Comparing the two area risk curves F1(R) and F2(R) 
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where P1h, P1m, P1r, are the calculated healty, marginal and 
risk state probabilities considering only spinning capacity 
(area risk F1(R)). Ph, Pm, Pr, are the actual healty, marginal 
and risk state probabilities using area risk curve F2(R). 
Now load forecast uncertainty can be included in the 
well-being analysis as some deviation always exists 
between the forecast and the actual loads and so the 
probability that (13) would not be satisfied increase. The 
uncertainty is described by a normal distribution in which 
the distribution mean is the forecast load L and the 
standard deviation is obtained from previous forecasts. 
The normal distribution can be divided into class intervals 
as shown in Fig 7 whose number depends upon the 
accuracy required. The area of each class represents the 
probability of the load being at the class interval mid 
value. The operating state probabilities for each load level 
k L are first calculated and then weighted by the 
probability of the load being in each level [1, 6]. 

 
Figure 7 – Class of interval of normal distribution 

3. Unit commitment problem via Genetic 
Algorithm 
It can be noticed that the problem is a combinatorial one: 
to select the generation units and loads in the operating 
reserve to reach the fixed risk level. The iterative 
procedure do not assure the optimality of the unit 
commitment problem as it does not take into account 
available different reserve combination. 
The main scope of the authors is to implement a 
procedure that find an optimal reserve among the different 
possible combination of generation reserve. The unit 
commitment problem is formulated with the goal of 
determining the mix and the number of on–line, spinning, 
stand-by unit, and the interruptible loads satisfying (2) at 
the minimum cost. 
The unit commitment problem (UC) can be 
mathematically formulated as: 

��
+==

+
n

ki
ii

k

i
i xcc

11
min  (32) 

s.v. 

( ) rnkk SPxxxxfr ≤+ ,...,,,..., 11  
1,...,1 =kxx  

165



1,0,...,1 =+ nk xx  
where  
�� k is the number of on-line committed units, 
�� n-k the number of supplemental reserve available 
�� ci  is the total production cost of unit i in the 

period considered,  
�� xi is a binary variable which the status (on=1, 

off= 0) of unit i in the period considered  
�� fr is the risk function, as recalled above, 

including on-line, spinning, rapid start, hot reserve 
units and interruptible loads. 

The unit cost is determined by a following cost function 
[7]: 

2
iiiiii PCPBAF ×+×+=  

where: 
Fi is operative costs of unit i  
Ai , Bi , Ci  are parametric costs of unit i 
Pi  is maximum capacity of unit i  

From a mathematical viewpoint the above problem is a 
large-scale, mixed-integer, combinatorial, and non-linear 
programming problem. Unfortunately, exact solution 
techniques are not currently available for this type of 
problems. Among the most relevant approaches to 
generate solutions to the above problem in the paper 
genetic algorithm is used [4].   
A genetic algorithm is a search technique based on the 
evolution of biological systems. The search starts with a 
set (population) of solutions (individuals) randomly 
generated and large enough. This set of solutions is the 
first generation. 
The candidate solutions represent an encoding of the 
problem into a form that is analogous to the chromosomes 
of biological systems in particular it is a string of binary 
values. Each chromosome represents a possible solution 
for a given objective function. At each chromosome a 
fitness value, which determines its ability to survive and 
produce offspring, is associated 
The UC solution is just a binary string of length “n”: the i-
th element of the string is 1 if reserve associated to i-th 
unit is selected 0 otherwise. At each solution it is possible 
to relate a fitness value according to the objective 
function of UC. 
As the objective function is a cost function and having in 
mind to maximize the fitness, the following fitness 
function for genetic algorithm purpose is chosen: 
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Cmax  is the maximum value of objective function  
UC is a constrained problem and the satisfaction of these 
constraints has to be taken into account.  

The constrained minimization problem is refined as a 
minimization problem with no constraint inserting a 
following penalty function in the objective function. [4]  

( )[ ] ( )( )2rSPxfrxfr −=Φ  
So the problem formulation finally reduced in terms of 
fitness function as follows: 

( ) ( )( )2
r

n

1ki
ii

k

1i
i

n

1i
i SPxfrrxcccxf −−

�
�

�

	






�

�
+−= ���

+===
(33) 

where r is an amplification coefficient and fr(x) is the risk 
function. 
GA now is able to solve the UC problem. Firstly, genetic 
algorithm determine the system risk considering only 
spinning and on line capacity  unit. If  (2) is satisfied, stop 
criterion is achieved, otherwise the genetic algorithm 
searches the stand- by, hot reserve units or interruptible 
loads to be added to this configuration. 
The first generation is randomly generated from scratch. 
After the evaluation of the initial randomly-generated 
population the GA begins the creation of new generation 
of solutions.  
Using  uniform crossover and mutation procedures,  with 
a probability of 0.02, new generations are obtained. 
Two genotype are selected using tournament selection. 
Individuals are randomly splitted into various sets which 
size is arbitrary. The parents are the best individuals into 
each set.  Selection pressure can be easily adjusted by 
changing the tournament size. If the tournament size is 
higher, weak individuals have a smaller chance to be 
selected.  
Deterministic tournament selection selects the best 
individual in any tournament. The chosen individual can 
be removed from the population that the selection is made 
from if desired, otherwise individuals can be selected 
more than once for the next generation.  
Tournament selection has several benefits, it is efficient to 
code, works on parallel architectures and allows the 
selection pressure to be easily adjusted.  
Then, a new offspring genotype (new solution) is 
produced by means of: crossover and mutation. 
The above procedure is repeated until a new generation 
are of solution is built, this replaces the parents. A elitism 
mechanism is used in the work: the best solution of every 
generation is copied to the next so that the possibility of 
its destruction through genetic operator is avoided. 

4. Simulation results 
The test system is constituted by five on-line and 
spinning, four rapid starts, three interruptible loads and 
three hot reserve units. Units main data are reported in 
table 1. 
A total load of 7000 MW/h is considered and rSP  equal 
to 0.001 is valued as adequate for the system [6]. 
Considering only the on-line and spinning units, the 
system risk is 0,0046, that is higher than the limit 
previously assumed; other units have to be committed. 
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Two cases have been considered for two load 
configuration. 

Table 2 - Generation Units data [7] 
Rapid start units Interruptible 

loads 
hot reserve 

units 
N° 1 2 3 4 5 6 7 8 9 10 

Capacity 50 50 100 100 50 100 150 50 100 100 

Cost 990 990 2103 2103 575 1151 1727 815 1650 1650 

4.1 Case A 
In a first instance, the load is considered deterministic. 
Choosing the units by classic method all the rapid start 
units have to be committed reaching a risk value of 
0,0007 with a cost of �/h 6186,00. The proposed genetic 
algorithm is used to find optimal solution. The individual 
is a string of ten binary elements representing, in the 
order, the rapid start, interruptible loads and hot reserve 
respectively. A population of five elements is considered. 
All possible solutions are 210=1024. The algorithm stops 
after 100 generations. In fig 9 the best fitness over 
generations is depicted and in tab 3 the final population is 
reported. GA gives optimal solution at 45 generation i.e. 
generating only 125 possible solutions. 
The solution suggested by the genetic algorithm (only 
interruptible loads) is cheaper than the classic one (�/h 
1726,00) with a risk value blow the fixed limit: 0,0009. 
 
Table 3 - Final population 

  # Individual Risk Fitness 
  1 0000110000 0.9999D-03 0.120280D+05 
  2 0001100000 0.8263D-03 0.110760D+05 
  3 0001100001 0.7900D-03 0.942600D+04 
  4 1000101111 0.4922D-03 0.634700D+04 
  5 0001100110 0.5304D-03 0.861100D+04 
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Figure 9 - Best fitness over generations 

4.2 Case B 
In this case a load uncertainty of 8% is taken into account. 
The system risk committing only the rapid starts units is 
higher than SPr, so two interruptible loads have to be 
committed reaching a risk value of 0.0009 with a cost of 
�/h 7912. The genetic algorithm in this case runs for 80 
generations. In fig 10 the fitness of best individual over 
generation is depicted and in tab 4 the final population is 
reported. The genetic algorithm solution costs �/h 
5556,00 with a risk level of 0.0008. 
 
 
 
 

Table 4 - Final population 
# Individual Risk Fitness 
1 1000111111 0.1026D-02 0.503069D+04 
2 0101000100 0.2219D-02 -.361349D+06 
3 1000001101 0.2225D-02 -.366478D+06 
4 0001100100 0.2196D-02 -.347170D+06 
5 1000110100 0.2226D-02 -.365482D+06 
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Fig. 10 Best fitness over generations 

5.  Conclusion 
The paper concerns the unit commitment problem for 
operating reserve. The well-being approach is used to 
solve it. The resulting model to solve is a combinatorial 
problem that becomes hard to solve for real life power 
system. In the paper a genetic algorithm is used to solve 
in a efficient way this problem and to find the most 
economical solution. The numerical results obtained on a 
significant power system show the goodness of the 
proposed algorithm.  
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