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ABSTRACT 

This paper treats a network model for calculating short-
circuit currents from internal shunt short-circuits in syn-
chronous machines, and describes an operationally dual 
method to the method previously employed to analyze in-
ternal shunt faults in synchronous machines. The model 
for internal shunt short-circuits is derived by theoretical 
means under the assumption that the machine considered 
is an ideal synchronous machine, by initially neglecting 
all resistances in the machine. Next, internal series faults 
in synchronous machines are dealt with by applying the 
organized cut-set method by Gabriel Kron. One or several 
simultaneous faults can be treated by the same matrix 
equation. The network model is to be used in conjunction 
with a model for the internal impedances in faulted ma-
chines. On the basis that the machine acts as an ideal syn-
chronous machine, it can be represented in symmetrical 
components. The model is analytically derived using only 
those data that manufactures normally provide. The calcu-
lations are done, assuming that the respective internal im-
pedances can be calculated, by means of applying a rela-
tively simple network model for the faulted machine. This 
approach uses Thevenins principle for calculating short-
circuits. 
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1 INTRODUCTION 

Internal faults in synchronous machines are in general 
rare, but they occur occasionally due to e.g. insulation 
failures. These faults may be categorized as either shunt 
short-circuits or series faults. These differ somewhat in 
their nature, but both cause the fault by altering the inter-
nal impedances of the machine. In this paper, a network 
model for analyzing shunt short-circuits and series faults 
are treated.  

Previous studies have been carried out within this area [1-
6, 25]. However, most of these studies use a rather large 

amount of data and complicated mathematics, such as e.g. 
FEM. This makes the model more complex and harder to 
understand the physical system, hereby, making the inter-
pretation of the model results is made more difficult. 

The model presented in this paper is derived using the 
representation of the ideal synchronous machine [12] in 
symmetrical components, see [20]. This reduces the 
amount of needed data to “nameplate-data” for the ma-
chine alone.  

A series fault may occur as a complete or partial fracture 
of parts of the phase-conductors or other situations where 
the admittance of a conductor is altered from what was in-
tended. In the model presented in this paper, it is assumed 
that there is no initial shunt short-circuit to either earth or 
other conducting parts at different potentials. Such situa-
tions may occur where conducting parts are poorly 
shunted, forming an asymmetry in the system. Initially, 
such an asymmetrical altering of the internal admittances 
of the machine will result in a voltage drop over the fault 
part of the conductor, which may be interpreted as the 
fault voltage, and which may even lead to a further 
enlargement of the fault.  

2 BASIC MACHINE AND SHUNT SHORT-
CIRCUIT CALCULATION 
PROPERTIES 

An ideal synchronous machine can normally be repre-
sented by three states, describing the synchronous ma-
chine under different conditions [21]: 

− Sub-transient state, where the machine is operat-
ing under extensively disturbed conditions, for 
which no magnetic stability is present (e.g. dur-
ing short-circuits) 

− Transient state, where the machine is operating 
under disturbed conditions, moving towards a 
magnetic stability 

− Steady state, where the machine is operating un-
der normal, steady conditions, magnetically sta-
ble 

When a machine is undergoing internal short-circuits it 
must be presumed that the sub-transient description of the 
machine is the most appropriate.  
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From basic synchronous machine theory [20] an ideal 
synchronous machine in its sub-transient state and con-
nected to an adjacent network can be represented in sym-
metrical components as shown in Fig. 1 [24]. 
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 Fig.  1.  Symmetrical component short-circuit equivalent for synchro-
nous machine connected to an adjacent network  

The impedances in this symmetrical representation can, 
according to [20, 24], be expressed (when neglecting re-
sistances) as 
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where X’’d is the direct-axis reactance of the synchronous 
machine, X’’q is the quadrature-axis reactance of the syn-
chronous machine, X0 is the zero-sequence reactance of 
the machine, and Zg,0 is the synchronous machine earthing  
impedance between the machine neutral and earth. Z’’1,gen 
is the synchronous machine positive sequence impedance, 
and Z’’2,gen and Z’’0,gen  are the negative and zero sequence 
impedance of the synchronous machine, respectively. Be-
hind the machine impedances are the respective synchro-
nous machine emfs, expressed in terms of symmetrical 
components. In Fig.1 the adjacent network is also repre-
sented by its symmetrical representation.   

If the fault current, symfI , , of any arbitrary shunt fault on 
the terminals of the machine, connected to the adjacent 
network, is desired, then it can be calculated using 
Gabriel Kron’s  organized mesh method of [23] as done in 
[21]. This gives 
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where S  is the mathematical Fortescue transformation 
matrix between symmetrical components time independ-

ent phase-values, sym,eq.c.sZ is a diagonal system imped-
ance matrix, containing the nodal impedances of the 

short-circuit equivalent, TC  is the tree-part of the mesh-
matrix, describing the topology of the applied short-

circuit [21, 23], and fZ  is the impedance matrix, contain-
ing the impedances of the applied short-circuit and the 
vector sym.,eq.thu  contains the pre-fault Thevenin emfs in 
symmetrical components in the fault location.  

The Fortescue transformation matrix is defined as 
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In this formulation of the Fortescue matrix, the order of 
the sequences is positive sequence (1-sequence), negative 
sequence (2-sequence) and zero-sequence (0-sequence).  

The system impedance matrix is defined as  
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The voltage vector symeqthu .,.  can usually be set to be  
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where u1,nom is the nominal positive sequence voltage of 
the network. 

The expression for the resulting initial short-circuit cur-
rent’s a.c.-component in (2) can be used for any arbitrary 
configuration of fault, making the method quite general 
for fault calculation 

For a single phase to ground short circuit in phase a, the 
mesh matrix becomes 
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The corresponding fault current is then given by 
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which can be found in the literature, e.g. [20]. 
 

3 THEORETICAL PHASE-VALUE 
MODEL FOR A SYNCHRONOUS 
MACHINE 

From the symmetrical representation of the synchronous 
machine, an impedance matrix, containing the imped-
ances of the machine, can be set up as  
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separating the grounding impedance of the machine neu-
tral from the machine description. 

If these values are transformed from symmetrical compo-
nents to time independent phase values, simply by the use 

of the Fortescue matrix S , the machine impedance matrix 
becomes 
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where Z’’
e is the self-impedance of each of the phase-

winding equivalents in the synchronous machine repre-
sentation, and Z’’

g  and ζ’’
g are the mutual impedances of 

the synchronous machine.  
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Fig.  2.  Theoretical phase model of synchronous machine. 

These derived theoretical phase-values can physically be 
interpreted as the self- and mutual impedances in Fig. 2 
and can be calculated as 

3
''

3
''''''

'' 02,0,2,1 XXXj
ZZZ

Z dgengengen
e

++
⋅≈

++
= , (11) 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
⋅+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
−=

6
''''3

6
''''

3
''

'' ,2,1,2,1,0 gengengengengen
g

ZZ
j

ZZZ
Z (12a) 

or  

( )
6

2''
6
''3'' 022 XXXjXXZ dd

g
−+

⋅−
−

−≈ , (12b) 

and 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
⋅−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
−=

6
''''3

6
''''

3
''

'' .2.1.2.1.0 gengengengengen
g

ZZ
j

ZZZ
ζ (13a) 

311



or 
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in terms of the symmetrical components of the synchro-
nous machine.  

Equally, the emfs of the machine can be transformed to 
theoretical phase values, by use of the Fortescue matrix. 
This leads to 
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where E’’d is the direct-axis sub-transient emf of the ma-
chine 

4 THE PARTITIONED PHASE-VALUE 
MACHINE MODEL  

Considering a machine in its pre-fault state, but regarding 
the machine from a position inside it, the description be-
comes somewhat different from a machine description 
from the terminals.  

Seen from inside, a model of a synchronous machine can 
be set up, using the philosophy shown in Fig. 3. If a ma-
chine is observed from an internal position, characterized 
by the arbitrarily chosen relative fault location at the posi-
tions α, β and γ, the machine impedances split up in three 
kinds of impedances: 

Phase-winding self-impedances (e.g. Z’’
aas or Z’’

aat) related 
to the star-point (neutral) region and the terminal region, 
forming the self-impedances of the respective phase-
winding partitions. 

Intra-phase mutual impedances (e.g. Z’’
asat), that are a 

consequence of the mutual impedance in-between the 
phase-winding partitions 

Inter-phase mutual impedances (e.g. Z’’
asbt  or ζ’’

asbt ), that 
are a consequence of the sharing of flux in-between 
phases-winding partitions of different phases 

To represent the machine in a satisfactory way, all these 
impedances must be determined. 

As commonly known, the adjacent network can be de-
scribed in symmetrical components by an impedance ma-
trix 
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which contains an equal description in phase-value com-
ponents given as 
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Adapting the model from Fig. 3, an impedance matrix for 
the total system with reference in the star-point, seen from 
an internal location in the relative distances α, β and γ be-
tween the machine neutral and terminals, becomes 
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where the parameters refer to the notation of Fig. 3.  

Assuming that all data are known, the corresponding 
nodal impedance matrix can be calculated, by firstly stat-
ing that  
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From a graph theoretical analysis of the network in Fig. 3, 
the nodal impedance matrix of the total network becomes 
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where A is the nodal incidence matrix. 
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As only the impedance relations for the nodes located at 
α, β and γ are of interest in a calculation of the short-
circuit current  from a shunt short-circuit in this position, 
the relevant parts of this matrix can be cut out of the ma-
trix in (19), forming the matrix 
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which in symmetrical components can be expressed as 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

××=
−

00201

02221

01211

1

PPPPP

PPPPP

PPPPP

ph.nodalsyssym.nodalsys

''Z''''Z
''Z''Z''
''''Z''Z

S''ZS''Z

ζ
ζ

ζ  (21) 

From the method of calculating short-circuit currents 
given in (2), the resulting short-circuit current can be cal-
culated as  
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i.e. 
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where the emfs in (22b) are given as 
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Fig. 3. Theoretical phase-value representation of a partitioned synchronous machine connected to an adjacent network; the adjacent network is represented by its 
symmetrical components, and the machine neutral (S) is earthed through an impedance, Zg,0. In this figure, the suffixes of the impedances relate to the coupling 
that these describe, so that e.g. the impedance Z’’asbt is the mutual coupling from the star-point region of phase a to the terminal region of phase b. 
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where E’’α, E’’β and E’’γ are the internal phase-value 
Thevenin emfs at the respectively positions α, β and γ in-
side the machine. The expression in (22) can, as (2), han-
dle any arbitrary configuration of the short-circuit applied, 
which expands to application of the method. 

As stated by Kron [23] the tree is chosen as the system 
seen from the faulted positions. Hence, each connection in 
the fault defines a mesh, described by the mesh matrix 

C . The tree-part of the mesh-matrix, TC , is given in ac-
cordance with the configuration of the fault apparatus, 
yielding for a single-phase short-circuit (in phase a), a 
two-phase short-circuit without earth (in phase a and b) or 
a three-phase short-circuit to earth  
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respectively. 

Other possible matrix-forms may be applied, according to 
[23] and/or [21]. 

 

5 BOUNDARY CONDITIONS FOR INTER-
NAL IMPEDANCES 

In order to be able to apply the above given method for 
calculation, it is crucial that proper modeled impedances 
are applied in the model. Thus the scale of the self- and 
mutual impedances are very dependent on the location of 
the fault, and hereby on the relative positions α, β and γ 
inside the machine, where the fault occurs.  

Considering the values of the self- and mutual imped-
ances in same phases (e.g. Z’’aa,s, Z’’aa,t and Z’’asat for 
phase a) these form what originally would form the self 

impedance, Z’’e, of the respective phase-windings, yield-
ing, as impedances are additive in behavior with respect 
to the theoretical phase-model in Fig. 3 that  
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which form a boundary condition for the consisting im-
pedances. Adapting this point of view to the mutual cou-
plings, a similar set of boundary conditions can be set up 
for the mutual impedances, yielding  
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btctbtcsbsctbscsg ZZZZZ '''''''''' +++=  (28c) 

and  

atbtatbsasbtasbsg '''''''''' ζζζζζ +++=  (29a) 

or 

atctatcsasctascsg '''''''''' ζζζζζ +++=  (29b) 

or 

btctbtcsbsctbscsg '''''''''' ζζζζζ +++=  (29c) 

forming the boundary condition of the mutual couplings.  

For the emfs an equal boundary condition can be set up, 
requiring that the emfs (regarded as vectors) fulfill  

atasa EEE '''''' += , (30a) 

btbsb EEE '''''' +=  (30b) 

and 

ctcsc EEE '''''' +=  (30c) 

It cannot be excluded that there may be many ways to 
model the internal impedances of a synchronous machine, 
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with respect to the internal geometric configuration of the 
regarded machine, but however the modeling is carried 
out, it must fulfill these boundary conditions.  

6 THE DUALITY BETWEEN SHUNT AND 
SERIES FAULTS 

As shown in sections 2 to 5, shunt short-circuits can be 
evaluated by means of mesh calculations using Thevenin 
equivalents. Thus, when calculating what in network the-
ory [21, 24] is dual to calculating shunt short-circuit, 
namely series faults, it can be done using the operation-
ally dual method, i.e. cut-set methods, introducing the or-
ganized Kronian cut-set method [21, 24]. According to 
network theory [24], the dual network to the Thevenin 
equivalent is the Norton equivalent. 

When calculating shunt short-circuits, the applied Theve-
nin theorem in the short-circuit current calculation says, 
that the  Thevenin voltage in the fault should be identical 
to the pre-fault voltage. Analogously, when considering 
series faults, and therefore Norton equivalents, the analo-
gous theorem must yield that the fault voltage must be 
calculated on basis of a Norton current identical to the 
pre-fault current through the subjected conductor.  

Hence, in the case of series fault calculation, the pre-fault 
current must be known to calculate the resulting change in 
voltage. By using the organized cut-set method for calcu-
lating network voltages on the basis of given currents 
[24], the resulting matrix expression for the fault voltage, 

symfu , , in symmetrical components becomes [21] 
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where S  is the mathematical Fortescue transformation 
matrix between the symmetrical components time inde-

pentent phase-values, symeqcsY ,..  a diagonal admittance 
matrix containing the mesh admittances of the fault 

equivalent, LD  is the link-part (i.e. co-tree part) of the 
cut-set matrix [24], describing the configuration of the 

fault [3], and symeqnoi .,. contains the pre-fault current of 
the machine in symmetrical components. 

The admittance matrix is defined as 
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The expression in (31) for the resulting fault over-
voltages is dual to the expresson in (2) from which the 
short-circuit current could be calculated when a short-
circuit occurs.  

7 DETERMINING FAULT EQUIVALENT 
PROPERTIES  

To determine the values of the mesh admittances of the 
fault equivalent, the mesh-properties of the fault equiva-
lent network must be determined. As the equivalent net-
work, describing the serial fault, is the same as the one 
describing the shunt short-circuits in sections 2 to 5, the 
analysis originates from the same network, keeping the 
same impedances, viz. 
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For these impedances the boundary conditions given in 
section 5 apply. 

From the network presented in Fig. 3, the mesh matrix as 
described by Kron in [21] and [24], becomes 
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as the system before the fault occurred is now perceived 
as meshes. Thus, the mesh admittance matrix in phase 
values becomes 

1
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t

phmeshsys
 (35a) 

or 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

γβγαγ

βγβαβ

αγαβα

ψ
ψ

ψ

''''''
''''''
''''''

'' .

YY
YY

YY
Y phmeshsys

 (35b) 

which when expressed in symmetrical components be-
comes 
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Due to Kirchhoff’s current law, the pre-fault current 
through the faulted location, expressed in phase-values, is 
the same as the pre-fault currents through each phase, 
yielding that 
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or 
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8 BUILDING THE CUT-SET MATRIX 

To be able to build up the total expression, it is necessary 

to determine the link-part of the cut-set matrix, LD , for 
the fault configuration. As described in both [24] and 
[21], a general method for setting up a link part cut-set 
matrix for a network is build by analyzing the network in 
the following way: 

1. Choose an expanding tree for the network (and 
hereby indirectly also a set of links (co-tree)) 

2. Set up a matrix, holding the tree-branches of the 
network horizontally and the link branches ver-
tically 

3. For each of the branches of the tree, imagine a 
cut, causing the network to fall into two distinct 
parts, by cutting the regarded tree-branch and a 
number of links.  

4. In the columns of each tree-branch insert for 
each link-row a  

a. 0 if the link does not have to be cut 
b. +1 if the link cut holds the same direc-

tion as the tree-branch regarded 
c. –1 if the link cut holds the opposite di-

rection as the tree-branch regarded 

For a system containing a machine and a network this 
should be represented as three meshes, one for each 
phase, shunted with any respective mutual admittances. 
For each distinct phase mesh, the pre-fault admittance is 
determined as the nodal admittance  between reference 
and the fault location. 

As it can hardly be imagined that series faults involve 
very complexly configured fault apparatuses, the usual 
configurations will be single-phased series faults, where 
the link part cut-set matrix for e.g. a fault in phase a is 
given as 
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a doubled phase serial fault for e.g. phases a and b, yield-
ing 
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or the highly unlikely three-phase serial fault, yielding 
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Now, knowing all parameters, the formula given in (31) 
can be used for calculation 

9 A SMALL EXAMPLE: THE SINGLE 
PHASE SERIES FAULT 

To stress the fact that there is a duality between the treat-
ment of shunt short-circuits and series faults, the outcome 
of a series fault in a single phase is calculated.  

Imagine a synchronous machine, in which phase a is sud-
denly subjected to a series fault. 

Say that the seriesal fault has an admittance of Yf, and 
that the synchronous machine has a symmetrical load, i.e. 
that 
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when I’’ph = I’’a = I’’b = I’’c 

Supposing that the machine may be represented by its 
admittance representation in symmetrical components, i.e. 
as in (32), then the resulting initial fault voltage becomes 
(when using the cut-set matrix presented in (38)) 
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which is the operationally dual expression to the case 
where an internal shunt short-circuit is observed 

10 CONCLUSIONS 

From this it must be stated that a network model, describ-
ing a synchronous machine connected to an arbitrary con-
figured adjacent network can be set up using rather simple 
means in the description. Apart from making it possible to 
calculate the resulting short-circuit currents from shunt 
short-circuits (presuming that a proper modeling of the in-
ternal impedances can be made), it sets up the boundary 
conditions of how the internal impedances must be re-
lated. 

An approach dual to that adopted for analyzing shunt 
short-circuits can be used for the treatment of internal se-
ries faults in synchronous machines. Thus, a method for 
calculating the induced voltage drops during series inter-
nal faults, using the Kronian organized mesh and cut-set 
methods has been demonstrated. 
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