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ABSTRACT

This paper treats a network model for calculating short-
circuit currents from internal shunt short-circuits in syn-
chronous machines, and describes an operationally dual
method to the method previously employed to analyze in-
ternal shunt faults in synchronous machines. The model
for internal shunt short-circuits is derived by theoretical
means under the assumption that the machine considered
is an ideal synchronous machine, by initially neglecting
all resistances in the machine. Next, internal series faults
in synchronous machines are dealt with by applying the
organized cut-set method by Gabriel Kron. One or several
simultaneous faults can be treated by the same matrix
equation. The network model is to be used in conjunction
with a model for the internal impedances in faulted ma-
chines. On the basis that the machine acts as an ideal syn-
chronous machine, it can be represented in symmetrical
components. The model is analytically derived using only
those data that manufactures normally provide. The calcu-
lations are done, assuming that the respective internal im-
pedances can be calculated, by means of applying a rela-
tively simple network model for the faulted machine. This
approach uses Thevenins principle for calculating short-
circuits.
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1 INTRODUCTION

Internal faults in synchronous machines are in general
rare, but they occur occasionally due to e.g. insulation
failures. These faults may be categorized as either shunt
short-circuits or series faults. These differ somewhat in
their nature, but both cause the fault by altering the inter-
nal impedances of the machine. In this paper, a network
model for analyzing shunt short-circuits and series faults
are treated.

Previous studies have been carried out within this area [1-
6, 25]. However, most of these studies use a rather large
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amount of data and complicated mathematics, such as e.g.
FEM. This makes the model more complex and harder to
understand the physical system, hereby, making the inter-
pretation of the model results is made more difficult.

The model presented in this paper is derived using the
representation of the ideal synchronous machine [12] in
symmetrical components, see [20]. This reduces the
amount of needed data to “nameplate-data” for the ma-
chine alone.

A series fault may occur as a complete or partial fracture
of parts of the phase-conductors or other situations where
the admittance of a conductor is altered from what was in-
tended. In the model presented in this paper, it is assumed
that there is no initial shunt short-circuit to either earth or
other conducting parts at different potentials. Such situa-
tions may occur where conducting parts are poorly
shunted, forming an asymmetry in the system. Initially,
such an asymmetrical altering of the internal admittances
of the machine will result in a voltage drop over the fault
part of the conductor, which may be interpreted as the
fault voltage, and which may even lead to a further
enlargement of the fault.

2 BASIC MACHINE AND SHUNT SHORT-
CIRCUIT CALCULATION
PROPERTIES

An ideal synchronous machine can normally be repre-
sented by three states, describing the synchronous ma-
chine under different conditions [21]:

— Sub-transient state, where the machine is operat-
ing under extensively disturbed conditions, for
which no magnetic stability is present (e.g. dur-
ing short-circuits)

— Transient state, where the machine is operating
under disturbed conditions, moving towards a
magnetic stability

— Steady state, where the machine is operating un-
der normal, steady conditions, magnetically sta-
ble

When a machine is undergoing internal short-circuits it
must be presumed that the sub-transient description of the
machine is the most appropriate.
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From basic synchronous machine theory [20] an ideal
synchronous machine in its sub-transient state and con-
nected to an adjacent network can be represented in sym-
metrical components as shown in Fig. 1 [24].

Synchronous machine __ NOdalS.C.  nework part of equivalent ___
equivalent NZWIYQ\EH impedance Z
. -«— T
Positive r
sequence E” 1 gen Ziseen Enet
network
7
R st
— 1 7
Negative r’ N
soqree| | ¥ ez0 | gl | E(zoinve O
network symmetrical case)
7777
A Zome
1
— L f
Zero L
sequence 81 E 0 gen= 0 Zoh e Eona(=0inthe {4
network i symmetrical case) T
77

Fig. 1. Symmetrical component short-circuit equivalent for synchro-
nous machine connected to an adjacent network

The impedances in this symmetrical representation can,
according to [20, 24], be expressed (when neglecting re-
sistances) as

an,genzj 'X”d (1&)
. . X, Y. X,) X

VA 2,gean'X2:J'[\/(X d""TOJ(X q*‘%}-%](lb)

Z"O,genzzg,o +j 'XO (1C)

where X’ is the direct-axis reactance of the synchronous
machine, X*’q is the quadrature-axis reactance of the syn-
chronous machine, X, is the zero-sequence reactance of
the machine, and Zg, is the synchronous machine earthing
impedance between the machine neutral and earth. Z”’4 gen
is the synchronous machine positive sequence impedance,
and 2", gena@nd Z”’ g 4en are the negative and zero sequence
impedance of the synchronous machine, respectively. Be-
hind the machine impedances are the respective synchro-
nous machine emfs, expressed in terms of symmetrical
components. In Fig.1 the adjacent network is also repre-
sented by its symmetrical representation.

If the fault current, | t.sym, of any arbitrary shunt fault on

the terminals of the machine, connected to the adjacent
network, is desired, then it can be calculated using
Gabriel Kron’s organized mesh method of [23] as done in
[21]. This gives

310

=1 =

|f,sym =S xCr

=t = = =1 = = \1
X(CTXSXZs.c.eq,smeS XCT"FZf)

=t = —_
xCr xS x Uth.eq.,sym

where S is the mathematical Fortescue transformation
matrix between symmetrical components time independ-

ent phase-values, Zsceqsymis a diagonal system imped-
ance matrix, containing the nodal impedances of the

short-circuit equivalent, ET is the tree-part of the mesh-
matrix, describing the topology of the applied short-

circuit [21, 23], and Zf is the impedance matrix, contain-
ing the impedances of the applied short-circuit and the
vector Gth.eq.,sym contains the pre-fault Thevenin emfs in
symmetrical components in the fault location.

The Fortescue transformation matrix is defined as

1
1 ®)
1

(4)

In this formulation of the Fortescue matrix, the order of
the sequences is positive sequence (1-sequence), negative
sequence (2-sequence) and zero-sequence (0-sequence).

The system impedance matrix is defined as

— Zl,s.c.eq. 0 0
Z s.c.eq,sym = 0 Z 2,5.c.eq. 0 (53.)
0 0 ZO,s.c.eq.
yielding
ZS.c.eq,sym =
r -1
o 0 °
Z 1,gen Zl,nsl (5b)
-1
0 R 0
Z 2,gen Zz,nel
-1
0 0 g
Z 0,gen ZO,net

The voltage vector Uth.eq.,sym can usually be set to be



ul, nom
(6)

u th.eq.,sym — 0

0

where U nom IS the nominal positive sequence voltage of
the network.

The expression for the resulting initial short-circuit cur-
rent’s a.c.-component in (2) can be used for any arbitrary
configuration of fault, making the method quite general
for fault calculation

For a single phase to ground short circuit in phase a, the

mesh matrix becomes

Cr=|0 ()

The corresponding fault current is then given by

3-u
| — 1,nom 8a
f \/5 ! (Z nl,gen+z ”2,gen+z 'IO,gen+3 Z f ) ( )
or
3-u
| . x \/_ 1,nom (8b)

X"+ Xy + Xg+Zyo+3-Z;

which can be found in the literature, e.g. [20].

3 THEORETICAL PHASE-VALUE
MODEL FOR A SYNCHRONOUS
MACHINE

From the symmetrical representation of the synchronous
machine, an impedance matrix, containing the imped-
ances of the machine, can be set up as

— Z I|l,gen 0 0
z ”synchsym. = 0 z ”2,gen 0 (9&)
0 0 YA ”O,gen_Z 9,0
or
B X", 0 0
z ”synchsym ~ J 10 X 2 0 (9b)
0 0 X,

separating the grounding impedance of the machine neu-
tral from the machine description.
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If these values are transformed from symmetrical compo-
nents to time independent phase values, simply by the use

of the Fortescue matrix S , the machine impedance matrix
becomes

= =1

7 —Sx7" S

synch. ph synch.sym (_’]_Oa)
or
_ 2 70 &,
Z”synch.ph = éﬂlg Z”e Z”g
2 & 2% (10b)

where Z", is the self-impedance of each of the phase-
winding equivalents in the synchronous machine repre-
sentation, and Z'y and ¢, are the mutual impedances of
the synchronous machine.
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Fig. 2. Theoretical phase model of synchronous machine.

These derived theoretical phase-values can physically be
interpreted as the self- and mutual impedances in Fig. 2
and can be calculated as

Z”e: Z“l‘gen+zIé,gen+2”0,gen z] . X”d +);2 +X0 , (11)
Z”g _ [Z “30,gen _ z I‘1,gen-'6'z Ildenj_'—j [\/g(z I‘l,gegzllz,gen)] (12a)
or
7" _\@(X"G—XZ) ’X”d-f-Xz—ZXO (12b)
¢ 6 6

and

oo Z“O,gen Z“Lgen+Z“2,gen . ﬁ(z‘ll‘gen_zllz,gen) (13a)
Rl 6 - 6



or

ﬁ(X"d—Xz)_J X" +X, = 2X,
6 6

S (13b)

in terms of the symmetrical components of the synchro-
nous machine.

Equally, the emfs of the machine can be transformed to
theoretical phase values, by use of the Fortescue matrix.
This leads to

Eq
Esynch.ph = § X Esynch.sym = § x| 0 (14&)
0
Eq E.
E synch.ph = a’. E;jl = E; (14b)
a-Ey | |E;

where E”’4 is the direct-axis sub-transient emf of the ma-
chine

4 THE PARTITIONED PHASE-VALUE
MACHINE MODEL

Considering a machine in its pre-fault state, but regarding
the machine from a position inside it, the description be-
comes somewhat different from a machine description
from the terminals.

Seen from inside, a model of a synchronous machine can
be set up, using the philosophy shown in Fig. 3. If a ma-
chine is observed from an internal position, characterized
by the arbitrarily chosen relative fault location at the posi-
tions «, B and y, the machine impedances split up in three
kinds of impedances:

Phase-winding self-impedances (e.g. Z 4 OF Z ) related
to the star-point (neutral) region and the terminal region,
forming the self-impedances of the respective phase-
winding partitions.

Intra-phase mutual impedances (e.g. Z sa), that are a
consequence of the mutual impedance in-between the
phase-winding partitions

Inter-phase mutual impedances (e.9. Z asst OF ¢ aspt ), that
are a consequence of the sharing of flux in-between
phases-winding partitions of different phases

To represent the machine in a satisfactory way, all these
impedances must be determined.
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As commonly known, the adjacent network can be de-
scribed in symmetrical components by an impedance ma-
trix

7 00
Z net,sym = 0 Z 2 net 0 (15)
0 0 Z

0,net

which contains an equal description in phase-value com-
ponents given as

p— = = =-1
Z net.ph = SxZ net.sym X S

Ze,net z g,net z g,net (16)
=|Z g.net Ze,net z g,net
Z Z Z

g,net g,net e,net

Adapting the model from Fig. 3, an impedance matrix for
the total system with reference in the star-point, seen from
an internal location in the relative distances ¢, fand y be-

tween the machine neutral and terminals, becomes

z' 'syslem. ph. =
[z, 0 0 0 0 0 o
0 Zh%. T Cue Tl T
0 Cars ZVs Zhses [ Z" e 2"
0 2 (e Zhi T L 2
0 2% Z'a Caw Z'wiZans Z'antZoms aatZom
0 " ZMm L' §antZgne LVt Zenet Lot g e
L 0 Z”ascl é’”bsct Z csct Z”alct+zg‘net é’”blct+zg‘net Z”CC,I+ZG,HGI_
1)

where the parameters refer to the notation of Fig. 3.

Assuming that all data are known, the corresponding
nodal impedance matrix can be calculated, by firstly stat-
ing that

'
system.ph. (Z

(18)

-1
"
system. ph

?.

From a graph theoretical analysis of the network in Fig. 3,
the nodal impedance matrix of the total network becomes

Z“S Z”Sa Z”Sﬂ Z”S;/
- = _ 71_ zv .z Z”aﬂ é,..ay (19)
A XY sy&phXA - le é/ll le le
~s af B Pr
Z”}/S Z”ay é’”ﬂy Z”;/

where Zis the nodal incidence matrix.
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Fig. 3. Theoretical phase-value representation of a partitioned synchronous machine connected to an adjacent network; the adjacent network is represented by its
symmetrical components, and the machine neutral (S) is earthed through an impedance, Zy,. In this figure, the suffixes of the impedances relate to the coupling
that these describe, so that e.g. the impedance Z”’ . is the mutual coupling from the star-point region of phase a to the terminal region of phase b.

As only the impedance relations for the nodes located at T _gflxa y
- . . sym =
a, pand y are of interest in a calculation of the short- o o o (22a)
circuit current from a shunt short-circuit in this position, [CT XS XZ" mm®S  XCT +zfj x
the relevant parts of this matrix can be cut out of the ma- S
trix in (19), forming the matrix Cr xS XE"y e m
— Z"a Z”tzﬂ é’”a}/ (20) i.e.
Z”nodalsys.ph: é/”aﬁ Z”ﬂ Z”/;‘y -1 =
z", ¢, Z", ltgm=S xCr x
-1
e . — - |%®m O ol _, _ _ (22b)
which in symmetrical components can be expressed as C:xSx| 0 z" 0 xS xCr+z:| x
P2
= =1 = = 0 0 Z“PO
Z”nodalsys.sym =S x Z”nodalsys.ph xS E"
" " " (21) =t = Pl
2" Z"pipy ¢ 'p1po Cr xS x E",
=1¢"pp2 Zp2 ZMp2po (=
Z"po ¢p2po LMpo

. N where the emfs in (22b) are given as
From the method of calculating short-circuit currents (22b) are g

given in (2), the resulting short-circuit current can be cal-
culated as
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_ E 'Pl -1 E Ia
E”th.eq.,sym =|E'p |=S x E”ﬂ (23)
EI IPO El l}/

where E”,, E”’; and E’’, are the internal phase-value
Thevenin emfs at the respectively positions «, gand yin-
side the machine. The expression in (22) can, as (2), han-
dle any arbitrary configuration of the short-circuit applied,
which expands to application of the method.

As stated by Kron [23] the tree is chosen as the system
seen from the faulted positions. Hence, each connection in
the fault defines a mesh, described by the mesh matrix

C . The tree-part of the mesh-matrix, Ct , is given in ac-
cordance with the configuration of the fault apparatus,
yielding for a single-phase short-circuit (in phase a), a
two-phase short-circuit without earth (in phase a and b) or
a three-phase short-circuit to earth

N

ET =0]’ (24)
0

N

Cr=|-1 (25)
0

or

11

Cr=|-10 (26)
10

respectively.

Other possible matrix-forms may be applied, according to
[23] and/or [21].

5 BOUNDARY CONDITIONS FOR INTER-
NAL IMPEDANCES

In order to be able to apply the above given method for
calculation, it is crucial that proper modeled impedances
are applied in the model. Thus the scale of the self- and
mutual impedances are very dependent on the location of
the fault, and hereby on the relative positions «, g and y
inside the machine, where the fault occurs.

Considering the values of the self- and mutual imped-
ances in same phases (e.9. Z"’aas 2’ aat and Z”" 555 foOr
phase a) these form what originally would form the self
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impedance, Z’’¢, of the respective phase-windings, yield-
ing, as impedances are additive in behavior with respect
to the theoretical phase-model in Fig. 3 that

2" =2 L i t2 L (27a)
or
2" =2 sl i +2 - L gy (27b)
or
2" =1" AL A2 L (27c)

which form a boundary condition for the consisting im-
pedances. Adapting this point of view to the mutual cou-
plings, a similar set of boundary conditions can be set up
for the mutual impedances, yielding

2" =2" ot st L st (28a)
or

VAN VANNI VAN AN VA (28b)
or

2" =2 ot Vot st et (28c)
and

Sy = ansC attE ans TG at (292)
or

¢ = et et tS atestE et (29b)
or

€= ¢ bsesTS bset T btes T bt (29¢)

forming the boundary condition of the mutual couplings.

For the emfs an equal boundary condition can be set up,
requiring that the emfs (regarded as vectors) fulfill

E",=E" +E",, (30a)
E", =E" +E"}, (30b)
and

E" =E" +E", (30c)

It cannot be excluded that there may be many ways to
model the internal impedances of a synchronous machine,



with respect to the internal geometric configuration of the
regarded machine, but however the modeling is carried
out, it must fulfill these boundary conditions.

6 THE DUALITY BETWEEN SHUNT AND
SERIES FAULTS

As shown in sections 2 to 5, shunt short-circuits can be
evaluated by means of mesh calculations using Thevenin
equivalents. Thus, when calculating what in network the-
ory [21, 24] is dual to calculating shunt short-circuit,
namely series faults, it can be done using the operation-
ally dual method, i.e. cut-set methods, introducing the or-
ganized Kronian cut-set method [21, 24]. According to
network theory [24], the dual network to the Thevenin
equivalent is the Norton equivalent.

When calculating shunt short-circuits, the applied Theve-
nin theorem in the short-circuit current calculation says,
that the Thevenin voltage in the fault should be identical
to the pre-fault voltage. Analogously, when considering
series faults, and therefore Norton equivalents, the analo-
gous theorem must yield that the fault voltage must be
calculated on basis of a Norton current identical to the
pre-fault current through the subjected conductor.

Hence, in the case of series fault calculation, the pre-fault
current must be known to calculate the resulting change in
voltage. By using the organized cut-set method for calcu-
lating network voltages on the basis of given currents
[24], the resulting matrix expression for the fault voltage,

Ut sym , in symmetrical components becomes [21]

— =-1 =
Uf,sym:S XDL

=t = = =1 = = \1
X(DLXSXYs,c.eq,smeS XDL+YTJ

=t =

x DL xS x ino.eq.,sym

(1)

where S is the mathematical Fortescue transformation
matrix between the symmetrical components time inde-
pentent phase-values, Ysceasym a diagonal admittance
matrix containing the mesh admittances of the fault

equivalent, Di s the link-part (i.e. co-tree part) of the
cut-set matrix [24], describing the configuration of the

fault [3], and Ino.eq.sym contains the pre-fault current of
the machine in symmetrical components.

The admittance matrix is defined as

_ Yl,s.c.eq.
Y s.c.eq,sym = 0 Y

0 0 Y (32)
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The expression in (31) for the resulting fault over-
voltages is dual to the expresson in (2) from which the
short-circuit current could be calculated when a short-
circuit occurs.

7 DETERMINING FAULT EQUIVALENT
PROPERTIES

To determine the values of the mesh admittances of the
fault equivalent, the mesh-properties of the fault equiva-
lent network must be determined. As the equivalent net-
work, describing the serial fault, is the same as the one
describing the shunt short-circuits in sections 2 to 5, the
analysis originates from the same network, keeping the
same impedances, viz.

Z”syslem.ph. =
_Z"g‘O 0 0 0 0 0 0
0 z Iaa‘s L' € ass 2" Z" ¢
0 Claps Z's Loscs ¢t Z" o 2"
0 Z' (e Z'. 2w ¢ 2"
0 Z”asa( Z”bsat émcsat Z”aa.l+ze.net Z Iatbl+zg,nel §"a1c1+zg,net
0 Clamt Lot L't Caitgnet Lwoitonet L bt g et
L 0 VA A A A +Zg‘net émbtctJng,net Z”co,l+ze‘ne! i
(33)

For these impedances the boundary conditions given in
section 5 apply.

From the network presented in Fig. 3, the mesh matrix as
described by Kron in [21] and [24], becomes

ol

Il
I N -
O, OO r O K
P O O Fr OO K

(34)

as the system before the fault occurred is now perceived
as meshes. Thus, the mesh admittance matrix in phase
values becomes

-1
= =t = =
" "
Y meshsys.ph (C xZ sys. ph XC)

(35a)
or
_ Y”a Y“aﬁ V/”ay
Y”meshsys.ph: V/”aﬁ Y“/;‘ Y”ﬁ;/
Y“a;/ l//”ﬁ;/ Y”}/ (35b)

which when expressed in symmetrical components be-
comes




-1 = —

Y IImeshsys.sym =S xY IImeshsys.ph xS (36a)
or
_ Y1 Yz ¥ wamo
Y”meshsys.sym =1 e Y2 Y vamo
Y 'm0 ¥ eeo Y Mo (36h)

Due to Kirchhoff’s current law, the pre-fault current
through the faulted location, expressed in phase-values, is
the same as the pre-fault currents through each phase,
yielding that

HI
! M1

Ino.eq.sym = I 'M 2

Mo (37a)
or
i“a
_ =1
ino.eq.,sym =S x i”b
e (37b)

8 BUILDING THE CUT-SET MATRIX

To be able to build up the total expression, it is necessary

to determine the link-part of the cut-set matrix, D'—, for
the fault configuration. As described in both [24] and
[21], a general method for setting up a link part cut-set
matrix for a network is build by analyzing the network in
the following way:

1. Choose an expanding tree for the network (and
hereby indirectly also a set of links (co-tree))

2. Set up a matrix, holding the tree-branches of the
network horizontally and the link branches ver-
tically

3. For each of the branches of the tree, imagine a
cut, causing the network to fall into two distinct
parts, by cutting the regarded tree-branch and a
number of links.

4. In the columns of each tree-branch insert for
each link-row a

a. 0Oifthe link does not have to be cut

b. +1 if the link cut holds the same direc-
tion as the tree-branch regarded

c. -1 if the link cut holds the opposite di-
rection as the tree-branch regarded

For a system containing a machine and a network this
should be represented as three meshes, one for each
phase, shunted with any respective mutual admittances.
For each distinct phase mesh, the pre-fault admittance is
determined as the nodal admittance between reference
and the fault location.
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As it can hardly be imagined that series faults involve
very complexly configured fault apparatuses, the usual
configurations will be single-phased series faults, where
the link part cut-set matrix for e.g. a fault in phase a is
given as

B 1
DL =|0
0], (38)

a doubled phase serial fault for e.g. phases a and b, yield-
ing

(39)

or the highly unlikely three-phase serial fault, yielding

(40)

Now, knowing all parameters, the formula given in (31)
can be used for calculation

9 A SMALL EXAMPLE: THE SINGLE
PHASE SERIES FAULT

To stress the fact that there is a duality between the treat-
ment of shunt short-circuits and series faults, the outcome
of a series fault in a single phase is calculated.

Imagine a synchronous machine, in which phase a is sud-
denly subjected to a series fault.

Say that the seriesal fault has an admittance of Y;, and
that the synchronous machine has a symmetrical load, i.e.
that

=-1 a

ino.eq.,symzs Xy |=

la
0
"] [0 41)

When I”ph: 1la: I”b: IHC

Supposing that the machine may be represented by its
admittance representation in symmetrical components, i.e.
as in (32), then the resulting initial fault voltage becomes
(when using the cut-set matrix presented in (38))



— _ = — — — -1
X(DLXSXYs.c.eq‘sym xS xDi +Yf)

—t = _
x DL xS X 1no.eq.sym

(423)
or
1 [
af,sym = 1 - a ph ”
1 Y Y MY e H3Y
(42b)

which is the operationally dual expression to the case
where an internal shunt short-circuit is observed

10 CONCLUSIONS

From this it must be stated that a network model, describ-
ing a synchronous machine connected to an arbitrary con-
figured adjacent network can be set up using rather simple
means in the description. Apart from making it possible to
calculate the resulting short-circuit currents from shunt
short-circuits (presuming that a proper modeling of the in-
ternal impedances can be made), it sets up the boundary
conditions of how the internal impedances must be re-
lated.

An approach dual to that adopted for analyzing shunt
short-circuits can be used for the treatment of internal se-
ries faults in synchronous machines. Thus, a method for
calculating the induced voltage drops during series inter-
nal faults, using the Kronian organized mesh and cut-set
methods has been demonstrated.
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