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ABSTRACT 
This paper describes how electroencephalogram (EEG) 
signals can be utilized in usability testing, especially for 
evaluating the cognitive mismatch between a user’s 
mental model and an appliance’s working model. We aim 
to evaluate the usability of information appliances that 
interact with users. In addition to traditional usability 
testing, it is necessary to consider the user’s mental state, 
that is, how users understand and predict an appliance’s 
response. Two serial psychophysiological experiments 
were conducted to confirm whether the EEG signals 
obtained from a user reflect the cognitive mismatch that 
occurs when a user’s expectations conflict with the actual 
response. We focused on the event-related brain potential 
(ERP) components measured by EEG, and we identified a 
positive ERP component with a peak latency of 550-
600ms as an indicator of cognitive mismatch. These 
results suggest that the ERP component might reflect a 
user’s mental status. By combining signals with 
behavioural observations, we can realize detailed 
evaluations that will improve product design. 
 
KEY WORDS 
Usability Testing, EEG, Cognitive Mismatch, Mental 
Model 
 
 
1.  Introduction 
 
This paper describes a method for improving the usability 
testing through the use of electroencephalogram (EEG) 
signals, specifically the evaluation of cognitive mismatch 
between a user’s mental model and an appliance’s 
working model. Usability testing is applied to evaluate 
prototypes of a new product, to compare the ease of 
operations between appliances, and to quest for new 
improvements. In a sense, traditional usability testing 
methods [1, 2] are established from a methodological 
point of view, observation of user operations is a 
fundamental method, and the use of questionnaires and 
interviews are additional tools for understanding 
observational results. Nielsen and Molich [3] utilized 
heuristics for effective evaluations based on many 
experiences. 

Wide varieties of products, from simple tools to computer 
GUIs (Graphical User Interfaces) are evaluated with 
usability testing. Since computers have great adaptability 
and program flexibility, product designers can create 
designs with almost any interface structure. This 
flexibility is the primary cause of the wide variety of 
mismatches between the product designer and the user. 
There is often a big difference between the working 
model of a product that reflects the intentions of the 
product designer and that of an actual user. The detecting 
such mismatches is particularly important when 
evaluating computer-based products, and there are few 
methods that evaluate users’ actual mental models. 
 
One possible solution is to measure brain activity using 
measuring instruments. EEG is one candidate that can 
explore the mental activities of a user almost directly. 
Some researchers in the field of Psychophysiology use 
EEG signals for human-computer interfaces, usability 
testing, etc. [4]. For example, Cremades et al. [5] used 
EEG signals for a human-computer interface and used 
frequency analysis to extract information about mental 
activity. Schalk et al. [6] used event-related potentials 
evoked just after a system error to improve the system’s 
detection ability of a user’s demands. This research was 
focused on EEG-based communication for those with 
severe motor disabilities. Conventional EEG signals are 
used with frequency analysis to investigate emotional 
states, sleeping states, and mental disorders, but frequency 
analysis is not suitable for detecting a short term response 
in HCI. There have been a few research studies on 
usability testing using EEG signals to detect cognitive 
mismatches during human-computer interactions. 
 
The purpose of this study is to identify EEG signals that 
indicate a cognitive mismatch between a user’s mental 
model and a system’s working model under HCI 
conditions, and to show how these mismatch signals can 
be utilized for usability testing. We focus on event-related 
brain potentials (ERPs) since mismatch feelings occur just 
after response from a product. With this signals, we can 
evaluate whether or not a user is operating a product with 
a proper mental model. These investigations enable us to 
gain a deeper understanding of the behaviour of a user, 
and more detailed evaluations help us to properly modify 
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products. We designed two serial experiments to confirm 
whether a cognitive mismatch signal can be separated 
from the usual matching conditions. The results of the 
experiments showed that the signal differences are clear 
enough to detect a mismatch when the positive ERP 
component has a peak latency of 550-600ms. 
 
This paper consists of following chapters: chapter 2 
describes the experimental design, results, and an 
interpretation of the results. We confirm the shape and 
characteristics of the ERP signals for the cognitive 
mismatch conditions. In the chapter 3, some hypothetical 
evaluations of the ERP signals are given. The 
combination of the ERPs and the behavioural results can 
reveal detailed evaluations of both specific functions and 
the whole appliance. In the chapter 4, we discuss the 
advantages and limitations of this method and mention 
other possible applications.  
 
 
2.  EEG experiments 
 
Two experiments using EEG measurement are explained. 
The purpose of the experiments is to investigate the 
mismatch between a user’s expectations and a system’s 
response. We assume that a user operating a system must 
have some expectation of response feedback and that the 
user would experience a certain level of mental 
discomfort if the system responds differently to how the 
user expected.  
 
In general, EEG signals can be analyzed by two main 
approaches: one is through frequency analysis and the 
other is using event-related potentials (ERPs). The former 
supposes that frequencies contain relevant information. 
The latter supposes that specific periods of time contain 
the relevant information. For example, brain waves 
evoked just after a specific stimulus (event) reflect the 
user’s response to the stimulus, and the interpretations are 
assigned to each positive and negative peak with their 
latency as reflections of the cognitive processes [7]. 
 
Usually event-related brain potential (ERP) is measured 
under a passive stimulus. For example, in an auditory 
odd-ball task, participants have to listen without any 
action to a series of simple constant tones with occasional 
variant tones. For HCI research, user actions for retrieving 
a system response must be included. Nittono et al. [8, 9] 
proposes the mouse click paradigm; in it stimuli are 
elicited through the subject’s action -- a mouse click. The 
results showed that the rare auditory stimuli elicited a 
positive peak around 300 ms, and comparing to passive 
stimuli, the amplitude of a positive peak was larger when 
the stimuli were triggered by the subject’s mouse clicks. 
 
In addition to the mouse click, we added an action 
selection step in our experiments. The action selection 
step is crucial for the human-computer interaction and 
predictions of feedback are essential for deciding which 
action may lead to expected feedback. 

2.1 Methods 
As explained above, both experiments included the action 
selection step. The difference between the two 
experiments is the feedback stimulus; experiment I uses a 
symbol as the answer to a selected action, while 
experiment II uses letters representing the selected action. 
These differences are prepared to confirm whether the 
measured ERPs are actually from the mental states 
properly or from the type of feedback response. 
 
Experiment I 
Participants were four normal right-handed volunteers 
(three men, one woman, 26-38 years old, M = 33.3 years). 
They provided written informed consent to participate. 
EEG was recorded from two midline scalp electrode sites 
(Cz and Pz according to the 10-20 system [10]) 
referenced to the nose tip. The bandpass filter was set at 
0.03-20Hz and the sampling rate was 1000Hz. An LCD 
monitor was placed 1.0m in front of the participant. The 
epoch for averaging was defined from 100ms before to 
900ms after mouse clicking. Baseline corrections were 
made by subtracting the mean amplitude of the 100ms 
pre-stimulus period from the amplitude at every time 
point along the averaged waveform. Trials in which the 
EEG or EOG exceeded 100μV were rejected from the 
ERP averaging.  
 
Each trial consisted of three steps as shown in Figure 1: 
(1) Visual indication. An “L” or “R” alphabetic letter was 
randomly displayed (duration = 200ms); (2) Action 
selection. Participants selected the left or right mouse 
button according to the preceding visual indication and 
then clicked; (3) Visual feedback. Either an “O” 
symbolizing a correct action, or an “X” symbolizing an 
incorrect action was displayed (duration = 100ms). In 
80% of the trials that a participant operated correctly, the 
“O” symbol (indicating a correct answer) was displayed, 
while, in the remaining 20%, the “X” symbol (indicating 
an incorrect answer) was displayed as unexpected visual 
feedback. ERPs were recorded for 130 trials, and a 20% 
mismatch condition was mixed during through the 31st to 
130th trial for preparing the initial familiarization phase 
(the first 30 trials) and the test phase (the following 100 
trials). 
 
Experiment II 
Participants were eight normal right-handed student 
volunteers (eight women, 21-23 years old, M = 21.8 
years). They gave written informed consent to participate. 
EEG was recorded from 2 midline scalp electrode sites 
(Cz and Pz according to the 10-20 system [10]) 
referenced to the nose tip. The bandpass filter was set at 
0.15-20Hz and the sampling rate was 200Hz. Other 
measuring conditions were the same as experiment I.  
 
Each trial consisted of three steps as shown in Figure 2: 
(1) Visual indication. An “L” or “R” alphabetic letter was 
randomly displayed (duration = 200ms); (2) Action 
selection. Participants selected the left or right mouse 
button according to the preceding indication and then 
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clicked; (3) Visual feedback. A “Left” or “Right” letter 
string was displayed (duration = 100ms) based on the 
clicked mouse button. In 80% of the trials that a 
participant acted correctly, the correct string was 
displayed (i.e. that corresponded with the button they 
clicked), while, in the remaining 20%, the other one was 
displayed as unexpected visual feedback. This enabled the 
user to react to the same amount of two stimuli; as the 
probabilities of “Left” or “Right” being displayed were 
equal. ERPs were recorded for 130 trials, and a 20% 
mismatch condition was mixed during from 31st to 130th 
trial, for preparing the initial familiarization phase (the 
first 30 trials) and the test phase (the following 100 trials).  
 
In these experiments, participants expect the system’s 
response based on the mental model they constructed after 
receiving instructions from the experimenter. However, 
the system sometimes reacts differently to the given 
instructions. This corresponds to an artificial system-side 
error; the other possible mismatch is due to human-side 
error. We suppose that the cognitive mismatch signal is 
elicited in both conditions. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Conditions in experiment I 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Conditions in experiment II 
 
2.2 Results 
The results of experiment I are shown in Figure 3. The 
thin line designates the average waveform of correct 
feedback (i.e. no mismatch occurred) and the thick line 
designates the average waveform of incorrect feedback 
(i.e. a mismatch occurred). The horizontal axis shows the 
time of the feedback (ms), and the vertical axis shows the 
amplitude of the electrode attached on the position of Pz 
(μV). From figure 3, the cognitive mismatch correlated 
the positive peak with a latency of around 550ms. The 

results of experiment II are shown in Figure 4. Figure 4 
also shows the positive peak with a latency of around 
590ms in the case of a mismatch. 
 
Figure 5 shows individual difference of the brain waves 
from four participants in experiment I. Although each plot 
shows different wave shapes, they have the same 
characteristics; the ERPs in the incorrect feedback 
condition have a positive peak of around 550-600ms 
when compared to the correct feedback condition. 
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Fig. 3 Grand mean ERP waveforms in experiment I 
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Fig. 4 Grand mean ERP waveforms in experiment II 
 

 
 
 
 
 
 
 

Fig. 5 Individual difference in experiment I 
 
 
In both of the experiment I and II, similar signals were 
observed in the positive ERP components with a peak 
latency of 550-600ms in the mismatch condition. These 
results suggest that the signals reflect incorrect feedback 
and that they do not directly reflect the different types of 
stimuli, i.e. the correct or incorrect answer symbol, or the 
letter the participant selected. In experiment II, each 
visual feedback (“Left” or “Right”) was displayed with 
equal probability, suggesting that this ERP component 
may not reflect the difference in the probability of visual 
stimuli, but rather that it reflects the mental process, in 
contrast to the oddball task. Therefore, we assume that the 
incorrect feedback is closely related to the mismatch 
between expectation and actual response. 
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There are researches on the interpretation of brain 
waveforms in relation to late positive components [11], as 
most related components could be feedback error-related 
negativity (FB-ERN) [12]. It appears our results don’t 
contain FB-ERN. We suppose the reason is the difference 
in the experimental conditions. Although the related 
research focuses on the ERPs elicited by the failure to 
predict a result, they use types of tasks that contain 
uncertainties. For example, they often use gambling or 
time-counting tasks, in which it is difficult to predict the 
exact system-side response. On the contrary, in our 
experiment and in HCI conditions, most of the system’s 
responses are clear and sometimes a mismatch might 
occur that breaks the user’s confident prediction. We 
think these differences could be the cause of the different 
brain waveforms. 
 
 
3.  Application for usability testing 
 
In this chapter, we describe the way in which the 
cognitive mismatch signals measured in chapter 2 can be 
utilized for usability testing. Cognitive mismatch signals 
can be used as additional information in conventional 
usability tests. We will show some examples of this 
integration using observational results, which are 
fundamental information of the usability test.  
 
Table 1 shows the interpretation of an integrated 
evaluation with an observational test. The table consists 
of two components. One shows the detection of a 
cognitive mismatch signal and the other represents the 
presence of a correct operation. In the table 1, there are 
four combinations of integrated evaluations.  
Cell (A) displays a case of incorrect expectation and 
correct operation. The user may not have had prior 
knowledge of the operation but could perform the 
operation successfully. In this case, the user uses guess 
work to operate. This is appropriate for product 
evaluation, because users often don’t have much prior 
knowledge of a new product’s with new function. A 
product designer can increase the chance of a user 
operating a device correctly through a good design.  
Cell (B) shows a case of correct expectation and correct 
operation. The user knows how the function works 
properly. 
Cell (C) is a case of incorrect expectation and incorrect 
operation. The user in this cell had an incorrect 
expectation with confidence and failed to correctly 
operate the product, therefore, a mismatch occurred 
between the user’s mental model and the product’s 
working model. This case is the most noteworthy, because 
the product might have given the wrong impression about 
how it operated. 
Cell (D) shows a case of no expectation and incorrect 
operation. In this cell, a product designer must think about 
giving more information to the user regarding what 
functions the product can achieve and must assist in the 
user’s construction of a correct expectation or a mental 
model. 

 
In conventional tests, the experimenter can only know 
whether or not the user operates the function correctly. If 
the experimenter combines this knowledge with EEG 
signals as we explained, more detailed information can be 
extracted, and this information can be exploited in order 
to improve products. 
 

Table 1 Integrated evaluation with an observational test 
 
 
 
 
 

(B) Operated
properly

(A) Operated without
prior knowledgeYes

Correct Operation?
(Observational test) (D) Operated

randomly
(C) Operated with

incorrect expectationNo

NoYes

Cognitive Mismatch?
(ERP measurement)

(B) Operated
properly

(A) Operated without
prior knowledgeYes

Correct Operation?
(Observational test) (D) Operated

randomly
(C) Operated with

incorrect expectationNo

NoYes

Cognitive Mismatch?
(ERP measurement)

 
Table 2 shows virtual examples of the evaluations of 
functions within one appliance. Information appliances 
such as TVs and DVD players have many functions and 
an evaluation has to be done for every function. In the 
example of table 2(a), there are four functions, and the 
number in each cell shows the percentage calculated from 
the usability test for some user groups.  Table 2(b) also 
shows an evaluation table without cognitive mismatch 
signals, namely, the conventional evaluation. The number 
in each cell is the percentage, corresponding to the table 
2(a), which is calculated if the same function is evaluated 
without EEG signals. For example, in function 1 of the 
conventional evaluation, 80% of the users operated 
correctly and 20% of the user operated incorrectly. In the 
integrated evaluation, 80% of users could be separated 
into two groups – the 70% of users who produced no 
mismatch signals and the 10% of users who produced 
mismatch signals. 
 

Table 2 Example of the integrated evaluation 
(a) Integrated evaluation 

 
 
 
                                                                     
 
 
 
 
 

(b) Conventional evaluation 
 
 
 
 
 
 
 
In the conventional evaluation (Table 2(b)), the results of 
the evaluation of function 1 and function 2 show the same 
percentage of correct operations, that is, both are 
evaluated as good. On the contrary, in the integrated 
evaluation, the evaluations are not the same, because 
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function 1 is operated correctly with correct expectation 
in most of cases. Function 2 is used correctly with 
incorrect expectation. Therefore, function 1 should be 
evaluated as “good”, and the function 2 should be 
evaluated as “good due to appearance design”, which 
means user could operate it correctly without having a 
correct expectation and that the user chose the correct 
operation thanks to the appearance or the affordance of 
the appliances. 
 
Similarly, function 3 and function 4 have the same 
evaluation in the conventional evaluation (table 2(b)), but 
have different evaluations by integrated evaluation. 
Function 3 should be evaluated as the user failing to have 
any expectations, which means it is necessary to notify 
the functional ability of function 3 and to assist to 
construct the correct mental model. Function 4 should be 
evaluated as the user having incorrect expectations -- 
function 4 attracted misleading operations.  Consequently, 
both function 3 and function 4 have the same evaluation 
“modification needed”, but the different aspects must be 
modified. 
 
In this way, the characteristics of this integrated 
evaluation using cognitive mismatch signals offer detailed 
evaluations of the user’s mental model. We can’t know 
the user’s exact mental model with this evaluation method, 
however, we can perceive the difference in specific 
functions that exist between a user’s mental model and a 
system’s working model. Equally, the grand average of 
the waveform of users and functions can be utilized in the 
design of appliances. We can judge which appliance is 
more misleading, which one has easier an operational 
structure without prior knowledge, and which appliance 
needs more detailed explanations about its functions. 
Furthermore, the average waveform of each user can be 
used in evaluating users. We can judge who has an 
incorrect mental model, who can operate with a perfect 
mental model, and who has no mental model of an 
appliance. 
 
Users often encounter mental model mismatches when 
using a system or an appliance. A user may operate a Mac 
computer with the mental model of a Windows PC, or 
operate a DVD recorder with the mental model of a VHS 
VCR, etc. We guess users often produce cognitive 
mismatch EEG signals, which can be characterized as 
having a positive peak at around 500-600ms. 
 
 
4.  Discussion 
 
In this chapter, we discuss the advances, limitations, and 
the necessary investigations of our usability testing 
methods. 
 
The merit of this usability testing method is that it can add 
extra information that cannot be detected through the 
conventional method. The information matches the user’s 
model and the system’s model. Usually, information 

about a user’s mental state is extracted from 
questionnaires during or after the usability test. These 
questionnaires are a useful and convenient method, but 
they require time and labor on the part of the user. The 
most crucial defect in the questionnaire method is that it 
interrupts the user’s natural continuous cognitive 
processes if it is done during a test, and it relies on the 
user’s unreliable memory if performed after a test. EEG 
measurements don’t interrupt the user’s cognitive 
processes during the usability testing. 
 
On the other hand there are some difficulties to be solved, 
and we now discuss two of them. The first one is weak 
brain wave intensity. Since the amplitude of ERP signal is 
so small, it is necessary to average many waveforms 
under the same conditions, usually between 10-20 times.  
If there are difficulties in performing repeat evaluations of 
a specific function by a single user, there must be several 
participants.  
 
The averaging also prevents the immediate detection of 
mismatch signals just after the feedback. If the signal 
could be detected without the addition of the waveforms, 
more applications could be realized. For example, 
immediate evaluation can affect the next evaluation 
function, such as adaptive evaluation. This adaptive 
evaluation is more effective in computer-aided education. 
In particular, a correct answer without correct expectation 
could be modified at the time it occurs. Some researchers 
are aiming to detect ERP signals from single trials using 
independent component analysis [13], Hidden Markov 
Models (HMMs) [14], wavelet denoising [15], etc. 
 
The second difficulty is the attaching the electrodes on the 
head. It requires time and a certain level of skill. For 
example, we used seven electrodes in our experiments, 
and this required more than 20 minutes preparation time. 
However, this is an easier and simpler preparation 
compared to other methods for measuring brain activities 
such as fMRI (functional Magnetic Resonance Imaging) 
and MEG (Magnetoencephalography).  
 
There are other issues to be investigated. One is whether 
these ERP signals can be observed in complex stimuli. In 
our experiments, we used simple symbols or letters such 
as “X” or “Right”. However, the responses of the 
products we would like to evaluate are not only simple 
ones but also more complex ones. For example, in the 
case of evaluating a TV, the response to the user may be 
motion pictures on the screen, or unfamiliar technical 
words, even in a motion picture. We have to investigate 
the characteristics of the ERP signals in these kinds of 
complex stimuli. 
 
The clarification of the relationship between ERP signals 
and a user’s mental model is also on the list for 
investigation. In cognitive science, one of the primary 
research fields includes user modeling during interacting 
with computers. Norman [16] defined the user-centered 
system design, which handles simple model for user’s 
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operating appliances. His model claims to fill the gap 
between the mental world of the user and the physical 
world of the system. The ERP signals in this paper might 
reflect the mismatch at such a gap. 
 
Card, Moran and Newell proposed the GOMS model [17], 
which consists of “Goals”, “Operators”, “Methods” and 
“Selection rules”. In their model, cognitive mismatch 
signals may correspond to the incorrect selection of 
“Selection rules”, or the incorrect choice of “Methods”.  
Currently, even HCI professionals make own user models 
based on these approaches [18], therefore, it can be said 
that there is no definitive user model. Still, we believe that 
the cognitive mismatch signal represents a kind of 
mismatch between a user’s mental model and a system’s 
model, and even at this level of interpretation, these 
signals can be used to improve usability testing by 
evaluating new aspects that conventional method cannot 
understand. 
 
 

5.  Conclusion 
 
This paper describes how EEG signals can be utilized in 
usability testing, especially in the detection of a cognitive 
mismatch between a user’s mental model and an 
appliance’s working model. The results of the two 
experiments showed the possibility of measuring the 
cognitive mismatch in a human-computer interactive 
condition. The results show that the observational data of 
user operations can be divided into two parts, showing 
which operations contain cognitive mismatch signals, and 
which do not. If the cognitive mismatch signal is present, 
we can find evidence of a problem even if a user can 
operate an appliance successfully.  
 
Some limitations were also discussed. The EEG signals 
are slight, and must be averaged out in order to judge 
whether or not the supposed signal exists. If we had a 
method that did not requiring averaging, we could use this 
testing method under real time conditions, which would 
mean a system could provide more timely information to 
assist the construction and modification of a user’s mental 
model. Another restriction is that users must have EEG 
electrodes attached to their heads. Clearly, this is not a 
usual condition for users when watching a TV or DVD at 
home, however, it is allowable in the evaluation phase at 
the usability test lab. Nevertheless findings from these 
tests can be used in improving product design from the 
aspects of user’s mental models. 
 
We are currently conducting the usability testing with 
consumer products, not merely with the simple mouse and 
the simple display. In future, we will improve this method 
so that it can be applied to a more realistic environment.  
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