
THE WALK-AWAY GUI: INTERFACE DISTRIBUTION TO MOBILE
DEVICES

Micael Sjölund
Department of Computer and Information Science

Linköping University
Linköping, Sweden

email: micsj@ida.liu.se

Anders Larsson and Erik Berglund
Department of Computer and Information Science

Linköping University
Linköping, Sweden

email: andla@ida.liu.se and eribe@ida.liu.se

ABSTRACT
To walk-away from a desktop application with a small, spe-
cific portion of the GUI for data collection or data moni-
toring is a desirable method of enabling adaptation of the
tools that we use to interact with computers and computer
networks. It follows the principles of how users often use
paper for mobile work. Although we have powerful PDAs
and mobile phones for mobility, our current GUI frame-
works do not enable such a behavior.

This paper presents the notion of walk-away GUI
and discusses its successful implementation in current GUI
frameworks. We also present a walk-away runtime frame-
work, CHUCK, and two walk-away GUI examples. The pa-
per shows that a mechanism for walk-away GUIs is possi-
ble but may also require significant changes to GUI frame-
works for a more general and wide-spread implementation,
in particular with regards to UI performance.

KEY WORDS
Ubiquitous computing, mobile interaction, remote applica-
tion control, distributed user interfaces

1 Introduction

Context-aware computing promise the ability to focus a
user interface to the situation at hand by understanding
what it is the user aims to do and thereby simplifying in-
teraction [1]. Furthermore, it holds the promises of en-
abling non-trivial mobile applications on mobile devices,
such as PDAs and mobile phones, where interaction sur-
faces are highly limited, redefining the information system
to be more suitable for mobility and mobile devices.

However, people have been doing this type of situated
redefinition of their information tools for a long time. Do
you remember scribbling down a few variables on a piece
of paper, and then walk away to collect the data on your
paper and later returning to the desktop and manually en-
tering the data back into the computer. Sometimes we do
this several times per day. This is a common form of mo-
bile work using the type of desktop applications we have
today, though not always in a very computerized form.

The desire to take a few variables out of the infor-
mation system and into the world for data collection or
for look-up, as part of a work task is commonplace – to

walk away with a small subset of our information tools.
This is unfortunately hard to accomplish using current GUI
technology. Granted, we can write things down in docu-
ments, transfer these documents onto mobile devices and
carry them around, and today, many applications are based
on documents. But what about variables that are stored in a
database somewhere that is not accessible by the user other
than through GUIs? Furthermore, many of the documents
we work on are much larger than the desired subset rele-
vant to the current situation. What about choosing only a
small subset of an existing document, not the entire 200
page document, and still being able to easily fill in the rel-
evant information without having to go back and inserting
them at the right place manually?

Is it possible to mimic how people work with paper
onto the computerized devices of today and thereby provide
a simple yet powerful way of enabling context-sensitivity
or situational adaptation? We believe so. By constructing
walk-away functionality in our GUI structures, it should
become possible to, in the spur of the moment, grab a piece
of a GUI and transfer that onto a mobile device such as a
Smartphone or a PDA without loosing the connection back
to the application across a network. In fact, we also be-
lieve that this way of computerizing walk-away behavior
would be a general mechanism for improving robustness
and reduce cognitive workload. Given the dynamic nature
of humans and thereby also our tendency to get distracted,
such computer support would be an improvement.

In this paper we present and discuss, situated decom-
position and distributing of partial UI to mobile devices:
Walk-Away GUIs. We describe a reference implementation
enabling users to walk away with a subset of a MS Excel
spreadsheet document and collect data. We also show how
the system was implemented using an XML-based GUI
description language, Views [2], and the .NET Compact
Framework [3] as one possible platform.

2 Related Work

Today there are no general-purpose way of sharing a partial
GUI from a desktop application to a hand-held device. Our
project is focused on that very issue. Here we present some
similar projects and contrast them to our work.

Bandelloni and Paternò [6] has similar motivations

476-032 114

debbie




and thoughts, as well as a similar structure of their sys-
tem, but they work with distributing web applications, with
which the GUI system does not communicate all GUI
events. Groulax present a toolkit for migrating part of a
GUI to other devices in [7]. They have on-line communica-
tion of GUI events and feedback, but they do not highlight
the need to distribute part of your current application in the
spur of the moment. [8] does provide a mobile GUI gener-
ated from appliance functionality, with remote interaction
capability. However, we want the user to choose what parts
to distribute and try to keep a fluidity of interaction with
the application.

The Pebbles project [9] has a similar system that is
focused on how to control a PC from a handheld device.
They have performed research on how to control PC appli-
cations from a palmtop computer. Our project differs from
Pebbles in a few aspects. First, we want the user to sponta-
neously grab an area of choice from the desktop computer
onto the handheld, which is illustrated with our spreadsheet
example. Secondly, Pebbles seem to have focused on close-
range usage of a PDA together with a PC to render more ef-
fective input to applications, whereas this project is focused
on the situation when the user needs a part of the GUI in
the hand when walking away from the desktop to perform
a task.

GUI serialization into XML have been accomplished
by Luyten et al. in [10], where they implemented transfor-
mation of Java AWT and Swing interfaces into XML using
reflection and inspection methods.

Other systems have remote interaction implemented,
but are mostly targeted to household appliances [8, 11, 12].
None of the projects are targeted toward remote interaction
with application GUIs.

3 Walk-Away Example Scenario

Let us look more closely at an example scenario for the
walk-away behavior of users.

A female nurse working in a hospital needs to collect
some information about a patient’s test results, and store
them back into a Excel worksheet. She grabs a preprinted
paper form and walks over to the labs and collects the de-
sired information. She then walks back to workstation and
types in the acquired information. As the information is
input to the system the nurse realizes that some informa-
tion about the patient is missing, she grabs a yellow-sticker
note and walks over to the patient and writes down the in-
formation and then again walks backs to the workstation
and stores the information in the application.

This small example illustrates how people work, al-
though it presents a set of unnecessary and time-consuming
problems such as walking back and forth to the work sta-
tion and the double work of moving data from paper forms
to information systems. These problems are difficult to
solve with current information system working methods.

One solution for this problem is to distribute the spe-
cific spreadsheet cells to a hand-held device, such as a PDA

Figure 1. Walk-away GUI principle.

or a smartphone, walk to the examination room and fill in
the numbers on the device, which automatically updates the
spreadsheet document. As the nurse returns to the worksta-
tion and notices that the patient information is missing he
moves those spreadsheet cells to the hand-held devices and
walks over to the patient to retrieve the desired data. The
nurse will not need to go back to the workstation and insert
the numbers sitting by the desk. She can rely on the system
to take care of the document update. The problem of walk-
ing back and fourth between the rooms to double check
and collect additional data is also removed. Inserting the
information directly into her hand-held instead of walking
back to the office lets her continue with other work where
ever she is and also removes the risk of being distracted and
forgetting to input the collected data. We believe that the
cognitive load on the user is decreased when the nurse can
perform computer tasks such as data input in the vicinity of
the data source.

As a general description for these kinds of tasks, of
casual needs to distribute a part of an application interface
to a handheld computer, we use the term Walk-Away GUI.

4 Walk-Away GUI

The screen–mouse–keyboard computer interaction method
is a paradigm that has stuck to most working environments,
although powerful mobile devices are present and capable
of providing the interface to the user “anywhere, anytime”,
the slogan of pervasive computing. In our opinion, hand-
held devices are an unused resource for computer interac-
tion in workplaces where stressful environments and com-
plex work-flows is a fact. Information handling is often
related to the activities surrounding the user and her con-
text, so moving the UI to her hands is a step in the right
direction.

A Walk-Away GUI, by other words, is an expression
for flexibly grabbing part of a graphical interface and put it
in your hand for continuing interaction. Being able to walk
away from your desktop and collect data, bringing along
the very pieces of an information system relevant to your
current context. Just-in-time GUI decomposition and dis-
tribution and the subsequent handling of network connec-
tivity during user interaction. The principle is illustrated in
Fig. 1.

Walk-away GUIs can be said to be a subset of dis-

115



tributed user interfaces (DUIs) [4].

5 Method for Walk-Away

Today there are no general-purpose ways of sharing a GUI
from a workstation application to a hand-held device, nei-
ther parts of it or the GUI as a whole. This is because of
several different reasons:

• Workstation application interfaces are coded in differ-
ent programming languages (C++, C#, Java etc.), us-
ing different GUI libraries to implement the presenta-
tion layer (MFC, Windows Forms, Swing).

• The GUI libraries most often used do not provide any
means to extract information about the GUI at run-
time.

So, how do we accomplish the task of distributing
GUI components to another device and keeping the con-
nection with the workstation application? The method we
have used is to generate GUI description for the phone on
the application-side, transfer it over network and render-
ing it on the hand-held at runtime. When the user inter-
acts with the hand-held GUI, network messages between
the distributed part of the GUI and the application are in-
terchanged.

Our manner of using abstract description for GUI
description differs from bitmap-level distribution of the
screen. In our approach, we will not get real WYSIWYS
(what-you-send-is-what-you-see), so it will give some in-
teraction discontinuity for the user. But when distributing
to for instance a smartphone, the input/output facilities on
the device is far from as powerful as on the desktop com-
puter, and a bitmap-level distribution would obstruct run-
time adaptation of the GUI.

6 Reference Implementation

As examples of walk-away behaviour on an application-
level, we have developed a framework, CHUCK, for on-the-
fly migration of UI components to a hand-held device. The
implementation consists of an client application running on
a smartphone, and a server “daemon” running on a work-
station. The server program is extensible to support dif-
ferent running applications, letting them distribute a GUI
via an XML description to the hand-held. Fig. 2 shows
the overall design of the walk-away system. A client dae-
mon runs on the handheld and listens for incoming requests
for displaying a GUI. A server daemon handles the con-
nections between the workstation applications and the dis-
tributed user interfaces, as well as keeping track of devices
that are connected.

As GUI description, we have chosen the XML-based
user interface description language Views (version 2) [2].
The interface renderer has been ported from the .NET
Framework to the .NET Compact Framework, and ex-
tended with distributed event and feedback messaging.

Figure 2. Overview of the CHUCK walk-away framework
design

6.1 Client

The client, running on the Windows Mobile 2003-based
smartphone, is a GUI renderer and a GUI runtime network-
ing device. The program is running on top of the .NET
Compact Framework, using the built-in GUI library, Win-
dows Forms, with reflection to build GUI widgets.

The GUI description language, Views, is in its cur-
rent implementation used as a front-end to the Windows
Forms constructs, with little support for error check-
ing in its current implementation. But it is powerful
in the sense that it can use all widgets derived from
Windows.Forms.Control.

We added support for runtime distributed events and
feedback, as the user interacts with the application. The
widget events are subscribed to from the workstation appli-
cation as specified in the Views GUI description, and com-
municated over network. Updating a widget property is
performed through sending a message containing the wid-
get name, property name and property value.

6.2 Server

The server application is built as a TCP-server listening
for devices on a specific port, together with a framework
for implementing connections to workstation applications.
These are implemented as plug-ins to the server, and are
loaded and initialized at startup. The plug-ins are the link
to applications that want to distribute their GUI to a hand-
held device, for instance a spreadsheet walk-away plug-in
as the connection between the server and MS Excel.

Requirements for the plug-ins are that they can de-
scribe the GUI to be distributed in Views XML format, and
that they have the event handling methods corresponding
to the widgets implemented. Each plug-in must also im-
plement the Chuck.API.IDUIApp interface. The plug-
in receives a Chuck.API.IDUIDevice object used
to communicate with the hand-held through the methods
ShowGUI() and SendFeedback().

The networking is using TCP/IP through wire, Blue-
tooth or GPRS. The system assumes constant network con-
nection in and a network roaming algorithm has not yet
been implemented. This and network degradation handling
is definitely an important feature of a ubiquitous walk-away
system. Ping times for GPRS is currently insufficient for

116



most GUI applications.

6.3 Walk-Away Plug-Ins

The CHUCK Plug-ins are loaded and initialized at server
application startup. In this framework, a plug-in has a few
responsibilities:

• The ability to create the GUI in Views XML format
to send to the device. This is a part in this implemen-
tation that in the future can be interchanged with UI
serialization into abstract formats. With an abstract
GUI description of the application, the part of the UI
to be distributed can be transformed to the specified
walk-away device.

• Provide GUI event handling functionality in parity
with names given in Views code. The plug-in spec-
ifies which events it wants to listen to, and provide
names of its event handling methods.

• Handle the interaction with the desktop application
(e.g. MS Excel in the spreadsheet case). The plug-in
is thereby a mediator between the walk-away device
and the application that lets the user utilize walk-away
behaviour.

Additionally, the plug-in is notified through events
from the server when a device connects to the server, i.e.
when a device is present on the network.

Apart from the necessary implementation features,
the plug-in can implement optional features.

• It can create it’s own GUI on the workstation that is
constructed in the plug-in Start()method, as in the
Movie player case, where a Windows Media Player
ActiveX control is embedded in a Windows Forms ap-
plication.

• It can provide a taskbar menuitem, which is loaded
into the server application taskbar menu upon loading
the plug-in.

As of now, there are implementations of two plug-ins
to the CHUCK walk-away server.

6.3.1 Spreadsheet Walk-Away Plug-In

As a reference implementation, closely related to the sce-
nario presented in the Introduction, an implementation of
spreadsheet cell distribution to a hand-held device was im-
plemented.

With the plug-in, the workstation user can select a
number of cells in a Microsoft Excel spreadsheet with the
mouse, and then by a click on the server application icon
in the Windows taskbar, send the cells to be displayed on
the smartphone, as shown in Fig. 3. The user is then able
to modify the cell values, while wirelessly connected to the
workstation. The plug-in interacts with the open Excel ap-
plication via interop.

Figure 3. These pictures show how the cells from MS Excel
are distributed via the server application to a smartphone
running the walk-away client.

6.3.2 Media Player Remote Control Plug-In

The Views-based media player remote control, as shown in
Fig. 4, is a plug-in with a media player GUI embedded that
can send its movie controls as widgets to the handheld de-
vice. More specifically, when a device is present, it hides its
movie controls and sends the relevant widgets to the hand-
held. This lets the user utilize the phone as a remote control
when for instance watching a movie.

The first implementation of the Views media player
remote was based on an older version of Views that con-
tained an UI renderer that did not use reflection in the same
way as the Views 2.0 system does. Details for that imple-
mentation is provided in [5].

7 Discussion

In this paper we have shown how to capture GUI session
states to distribute parts of the GUI to a handheld device
and walk away with this very specific GUI as part of adapt-
ing UIs to situations. We have shown that it is possible to
create a general mechanism for such Walk-Away GUI and
implemented a framework with XML-based GUI distribu-
tion. So far we support GUI distribution using the Views
XML-language for GUI descriptions on Smartphone de-
vices. In the future it is likely that XML-languages for GUI
components will be commonplace. Mozilla’s interface lan-
guage XUL [13], W3’s UIML [14] and the UI markup lan-
guage of the Longhorn operating system, XAML [15] are
examples of XML UI description languages leading this
trend.

With experiences from the development of the walk-
away framework with the media player plug-in and the Ex-
cel plug-in, we have also discovered important issues con-

117



Figure 4. Screenshots of the movie player remote control
and illustration of network communication.

cerning further development of general walk-away GUIs.

UI Performance: Distributing partial GUIs from on com-
puter onto another mobile device currently introduces
fair amounts of network communication for low-level
UI handing. The network cannot always provide the
responsitivity required by a GUI to get a good user ex-
perience, especially when the connection is wireless.
In networks where connectivity may fluctuate this can
also cause unwanted UI behavior, such as event mes-
sages being queued and then appear in a blur or even
be lost over the network. The solution would be to
move more of the code over to the handheld device
and thus reduce, in particular, the amount of low-level
communication needed. However, the age old Model–
View–Control design pattern [16] that most GUI mod-
els implements, complicates the issue. Since appear-
ance and logic is separated in many applications it is
a non-trivial task to automatically determine which
code to move over to the handheld device. A more
thorough redesign of the underlying frameworks is re-
quired and to some extent old applications may not be
able to support good UI performance because of this
earlier design for source-code modularity.

GUI design control: In our framework, it is possible to
take a part of a GUI and distribute it to a handheld
device. However, for both usability and appearance
reasons, developers may want to limit which parts of
a GUI is distributable, which may not be separated, to
provide a frame with a company logo and so fort. All
in all, developers are likely to want to control, how the
distribution of GUIs can take place. Needed are new
concepts for layout engines, enabling developers to
describe the distribution of various components. Fur-
thermore, visualization of these many different possi-
ble designs on handheld devices may be required for
testing. In this sense, walk-away behavior introduces

requirements on development environments.

8 Conclusion

From our work with walk-away GUIs we conclude that it
is indeed possible to create this type of flexible deconstruc-
tion and just-in-time distribution of GUIs as a method of
providing situational adaptation for users of software ap-
plications. In fact, it is possible to create general methods
that work with programs without developing dedicated dis-
tributed systems. Users may in a given situation walk away
with a very specific part of a GUI as a means of acquiring
context-aware behavior from software applications.

However, our work has also uncovered some underly-
ing changes needed in the GUI models and tools. Clearly, a
more general model of distributing GUIs that handled these
shortcomings needs to be developed to enable the more
general use of this desirable UI feature.

A cknowl edg ements

This work has been possible due to support from Microsoft
Research and Santa Anna IT Research Institute

References

[1] Bill Schilit, Norman Adams, and Roy Want. Context-
aware computing applications. In IEEE Workshop on
Mobile Computing Systems and Applications, Santa
Cruz, CA, US, 1994.

[2] Judith Bishop and Nigel Horspool. Developing prin-
ciples of GUI programming using Views. In Pro-
ceedings of the 35th SIGCSE technical symposium on
Computer science education, pages 373–377. ACM
Press, 2004.

[3] Microsoft .NET Compact Framework. http:
//msdn.microsoft.com/mobility/
netcf/default.aspx.

[4] Erik Berglund and Magnus Bång. Requirements for
distributed user-interfaces in ubiquitous computing
networks. In Proceedings of MUM2002, Oulo, Fin-
land, 2002.

[5] Micael Sjölund, Anders Larsson, and Erik Berglund.
Smartphone views: Building multi-device distributed
user interfaces. In Proceedings of Mobile HCI ’04,
2004.

[6] Renata Bandelloni and Fabio Paternò. Flexible in-
terface migration. In Proceedings of the 9th interna-
tional conference on Intelligent user interface, pages
148–155. ACM Press, 2004.

118



[7] Donatien Groulax, Peter Van Roy, and Jean Vander-
donckt. Migratable user interfaces: Beyond migra-
tory interfaces. In Proceedings of Mobiquitous 2004,
2004.

[8] Jeffrey Nichols, Brad A. Myers, Michael Higgins,
Joseph Hughes, Thomas K. Harris, Roni Rosenfeld,
and Mathilde Pignol. Generating remote control in-
terfaces for complex appliances. In Proceedings of
the 15th annual ACM symposium on User interface
software and technology, pages 161–170. ACM Press,
2002.

[9] Brad A. Myers. Using handhelds and pcs together.
Commun. ACM, 44(11):34–41, 2001.

[10] Kris Luyten and Karin Coninx. An XML-based run-
time user interface description language for mobile
computing devices. In Proceedings of the 8th Inter-
national Workshop on Interactive Systems: Design,
Specification, and Verification-Revised Papers, pages
1–15. Springer-Verlag, 2001.

[11] Fridtjof Feldbusch, Alexander Paar, Manuel Oden-
dahl, and Ivan Ivanov. The btrc bluetooth remote con-
trol system. Personal Ubiquitous Comput., 7(2):102–
112, 2003.

[12] Alexandre Sanguinetti, Hirohide Haga, Aya Fu-
nakoshi, Atsushi Yoshida, and Chiho Matsumoto.
FReCon: a fluid remote controller for a freely con-
nected world in a ubiquitous environment. Personal
Ubiquitous Comput., 7(3-4):163–168, 2003.

[13] XML user interface language (XUL). http://
www.mozilla.org/projects/xul/.

[14] UIML: An appliance-independent xml user interface
language. http://www8.org/w8-papers/
5b-hypertext-media/uiml/uiml.html.

[15] Longhorn markup language (code-named
XAML) overview. http://longhorn.msdn.
microsoft.com/lhsdk/core/overviews/
about%20xaml.as%px.

[16] Glenn E. Krasner and Stephen T. Pope. A cook-
book for using the model-view controller user inter-
face paradigm in smalltalk-80. J. Object Oriented
Program., 1(3):26–49, 1988.

119


