

ENABLE BETTER ACCESS TO MATH FOR BLIND AND VISUALLY
IMPAIRED INDIVIDUALS – A MATH EXPRESSION READER

Wenfeng Li and Baoxin Li
Department of Computer Science & Engineering

Arizona State University, Tempe, AZ 85281
USA

Wenfeng.Li@asu.edu, Baoxin.Li@asu.edu

ABSTRACT
Current optical character recognition (OCR), speech
synthesis, and video technologies have made it possible to
build reading aid devices for blind and visually impaired
readers. However, most existing systems can read only
plain text from printed materials. For scientific books
such as mathematical or engineering textbooks that are
full of equations, formulae, tables, and graphical charts, a
conventional OCR-based system will not be able to
provide the desired assistance. This paper presents a
completely automatic method for converting a scanned or
captured mathematical expression into speech. In
addressing the challenges in automatic symbol
recognition, we present several new techniques that make
the proposed system more robust. The symbol-to-speech
conversion is facilitated by utilizing a MathML-compliant
player.

KEY WORDS
Interaction design for people with disabilities, formula
recognition, MathML

1. Introduction

Most people read through visual sense, but such
capability is partially or completely limited for the blind
and visually impaired readers, who typically read through
tactile (touching) or auditory (hearing) senses. Braille is
universal tactile media for blind person, which enables
blind persons to read and write text. Since most scientific
materials include mixed text, formulas, charts and graphs,
how to enable blind readers to understand these materials
has been a challenging problem. There are many
standards for mathematical expressions in Braille. For
example, Nemeth code [11] is most commonly used in the
U.S., and Dots-plus [12] is a 2-D Braille math format,
which is still in experimental stage. In either case, aids
from sighted person are typically required to translate
existing materials into Braille.

In the case of reading mathematical expressions, with a
Braille-enabled device, the problem seems to be partially
solved as long as the expressions are first converted to
Braille via some means. However, this conversion is

typically time-consuming if it is done by humans, and
there is no existing complete system that can achieve this
automatically and reliably, although there have been
much reported research on automatic method for
automatic recognition of mathematical expressions.
Additionally, as a matter of fact, recent technology
development may render other means other than Braille
more appropriate. For example, studies from [1] show
that, in the case of receiving and perceiving information,
the auditory sense is two orders of magnitude faster than
the tactile sense. Also, in [2], J. Halliday discussed the
strengths and weaknesses of speech and Braille from
cognitive psychology point of view and stressed the
importance of combining multiple forms of media
(speech, Braille, and tactile graphics) for blind student
education. This becomes feasible with the development of
new video, audio and computer technology in recent
years, especially the speech synthesis and OCR
techniques. Nowadays, OCR-based reading systems for
the blind population are commonly available for books.

One of the remaining problems is how to make
mathematical expressions accessible to a blind reader,
which has not been handled by existing commercial OCR
systems. One core task in achieving such an objective is
the automatic recognition of printed mathematical
expressions, which has been heavily researched since the
1960s and many methods were published. Among the
well-known methods are the projection profile cutting [3,
4, 5], attributed string grammars [14, 15], structure
specification schemes [16], graph rewriting [17],
stochastic grammars [18], and procedural translation [19].
A survey of these and other methods can be found in [6].
It would be difficult to declare any of the methods as the
best, since each has its advantages and disadvantages.
Although many methods claim to have accuracy of over
90%, even a single error may be fatal to the whole
recognition since a lexical error can cause the total failure
of syntactic and semantic analysis, which is a core step in
most of the methods.

In this paper, we present a complete method for
converting printed mathematical expressions into speech,
to enable a blind reader to read through equations,
formulae, etc that are ubiquitous in scientific books. The

476-033 197

debbie

proposed method employs the special features of
mathematical expressions to circumvent the difficulty in
syntactic and semantic analysis: we simply provide a
speech representation of the underlying mathematical
expression without explicit analysis of the meaning of the
expression. The interpretation is up to the reader, who is
presumably in a better position to understand the meaning
of the expression. Consequently, one advantage of the
proposed method is that the reliability of the system does
not rely on the correctness of lexical processing. The
reader may detect an error and/or solve the ambiguity
through his own judgment.

The rest of the paper is organized as follows. In Section 2,
we describe the proposed method, with accompanying
examples to illustrate key steps. Section 3 presents
additional experimental results, and Section 4 concludes
with discussion on continuing and future work.

Figure 1. Data flow and major processing steps in the
proposed method.

2. Proposed Method

The proposed method is a system for converting printed
mathematical expressions into speech so that a blind
reader can “read” them through listening. The major
processing steps of the proposed system and the data flow
are illustrated in Figure 1. The system digitizes the input
page, a printed document containing math expressions,
via a scanner or a digital camera. After some pre-
processing including the segmentation of the math
expressions from other texts, symbol recognition and
structure analysis are applied to the extracted region.
Further syntax and semantic analysis can be performed
without any transforming since most of the grammar
operations use tree structure and XML DOM (Document
Object Model) can present MathML string as a tree
structure. Finally, the recognized expression is formatted
into a MathML string, and MathPlayer is utilized to read
out the math expression. Note that the MathPlayer is used

here only for illustration purpose and for fast prototyping.
In a practical system, it is not difficult to develop a stand-
alone symbol-to-speech subsystem. Details of these
processing steps are explained in the following sub-
sections.

2.1 Image Capture and Pre-processing

The prototype system is implemented on a personal
computer platform with commodity peripherals , and the
majority processing is done via software. This would
facilitate easy adoption of the developed technology,
assuming that the target user, a blind reader, will have
access to a reasonably equipped PC.

Image Acquisition: The first step is to acquire the printed
document into the system as a digitized image. Two
approaches are used in our experiments, video-camera-
based and scanner-based. PC-based video camera and
digital camera are very popular nowadays and are
inexpensive. Thus a camera-based acquisition module
would be preferred for portability of the system, although
a scanner-based one would easily provide image of better
quality and resolution. For a camera-captured image, we
first obtained a binary image through thresholding the
gray-level input image. For scanner-based acquisition, we
use only a low resolution of 100dpi. Currently, emphasis
is on building a complete end-to-end system, and we have
to take extra measures to ensure the captured data is clean
without much noise. So one of the major pre-processing
steps is to detect and fix any potential misalignment of the
captured document, as detailed in the below.

Document de-skewing: Even if cares have been taken
during the acquisition to align the document, a minor
residual skew may still exist. Most OCR systems require
horizontally aligned text and are sensitive to skew angles.
This will also be true in our algorithm for symbol and
equation recognition since our system is working on
certain baselines, which require all text lines are properly
aligned. A simple anti-skew approach is to utilize the
homogeneous feature of aligned texts. Projection profile
is the most straightforward method for skew detection and
it works in the following way [13]. First, we count the
number of black pixels of each row as a horizontal
projection profile. It is easy to imagine that, for a
document image without skew, this profile would reach
its peaks for text lines and valleys for space lines. For a
document with minor skew angel, the contrast between
the peaks and the valleys is reduced. So the problem of
de-skewing turns out to be an optimization problem where
the sum of squared profile function is used as the
objective function and the task is to maximize the
objective function with respect to the rotation angle. An
exemplar curve of the objective function with a document
image originally skewed by o85.5− is shown in Figure 2,
where the global maximum at o85.5 , indicating the skew
angle. After the skew angle is detected, de-skewing is

198

straight forward: we will simply undo the skew by
rotating the image by the same angle at the opposite
direction.

Figure 2. Projection profile: the objective function
computed from the projection profile, with respect to the

rotation angle.

Although projection profile is simple and effective, it is
computational expensive since the image must be rotated
many times, some improvements can reduce the
computation such as downsampling the image first and
detecting a coarse skew angle at the lower resolution first
and then refining in the original resolution.

2.2 Segmentation and Formula Extraction

Before recognition can be applied to an object, either texts
or formulae, we need to first segment the different
components so that different processing can be applied
accordingly. A run length smoothing algorithm from [7]
can turn the image into blocks of components as
illustrated in Figure 3. The text blocks and formula blocks
can be classified according to their different
characteristics. For example, text lines are grouped into
thin and long lines together, while formulas are grouped
into shorter blocks and the margins above and below are
normally larger than text line spaces. To avoid the
possible interference of other graph blocks, the extracted
candidate formula blocks will be further verified in the
later recognition stage: If a block cannot be recognized to
be a set of mathematical symbols, they will be rejected.

2.3 Symbol Recognition

It is natural to consider choosing commercial OCR
software for the recognition task in such a system.
However, commercial OCR components are designed to
recognize texts and trained to understand English
literatures. In math expressions, many different fonts and
glyphs are in use. In addition, the symbols may stand
alone and do not conform to the English syntax according
to some context, which is typically exploited in the OCR
algorithms. Therefore, we need to design our own OCR
component. To this end, we first apply the component
labeling method of [8] to the digitized image to get

connected components, and then we adopt the feature
vector method as described in [9], as follows. A feature
vector for each symbol is defined as a 27-dimension
vector: evenly divide the symbol into 5x5 subdivisions;
the percentage of black pixels in each subdivision makes
up the first 25 elements of the vector; the whole
percentage of black pixels and the ratio of block height to
width are put into the remaining two elements. Euclidean
distance is used to calculate the difference between two
characters for recognition. In our initial testing, this
method given in [9] works quite well.

(a)

(b)

Figure 3. A sample document (a) and its segmentation
into object blocks (b).

199

For training data, we use images from two sources:
images generated by software directly from Microsoft
Word document and TEX files. These images are 300dpi,
black and white, and noise-free. We generate our database
from all fonts that are typically used in Word and TEX,
and they have been found to cover the general printed
documents we have tested.

When a new document image is processed for
recognition, the same component labeling method stated
above will be applied. An example of the detected
connected components is illustrated in Figure 4, where the
bounding boxes specify the components. These
components will then go through the above-described
feature computation process and then be recognized
through comparing the computed feature vector against
the stored symbol database.

Figure 4. Extracted and segmented formula. Each

bounding box represents a potential symbol.

2.4 Expression Recognition

As discussed earlier, there are many formula recognition
methods. We use a procedural translation [19] method
for the following reasons. Firstly, what our system
handles are printed reading materials and we assume that
the image quality is good enough and thus for such
printed documents, all texts including formulas are
aligned to specific horizon baselines which can be utilized
by procedural translation. Secondly, the result generated
in our system is an XML string, which grows from top to
bottom by depth first search. A procedural translation
matches this order naturally and no tree operation is
required for grammar processing. In addition, the speed
performance of such as a method is attractive.

The proposed method works as follows. First, we form
baselines for all symbols: each symbol is associated with
a horizontal line position, called its baseline. For all
normally printed characters, they are aligned to certain
baselines. New levels such as subscript and superscript
will start a new baseline. The baseline of symbol is
determined from the trained data and stored in the
database. Figure 5 illustrates a formula with baselines
depicted.

Figure 5. A sample formula with formed baselines

Next, we organize and format the detected symbols.
MathML and LaTex are two commonly used math
notation standard. We use MathML in our system since it
is more widely supported especially in Web-based
applications. The steps of formatting the detected symbols
consist of the following:

1. Start with the longest baseline. Do following
steps on symbols (or virtual component, see step
2) belonging to this baseline.

2. Search all pivotal characters, including fraction
“─”, root “√”, summation “∑”, integration “∫”
and product “∏”; Group all symbols within their
effective area and start a recursive process from
step 1 to analyze the sub-structure of the
expression; These symbols will be replaced by a
void component in future process so they will
not be analyzed again by other process.

3. Start from the left to right on symbols of current
baseline, check around area to check subscripts
and supscripts, and if there exists any, start a
recursive process for sub-expression; Form a
MathML node for each symbol and append to
the MathML string.

4. Return the MathML string.

A MathML string returned from above processes for the
formula in Figure 4 is given by

<m:math>

<m:mi>X</m:mi>
<m:mo>=</m:mo>
<m:mfrac>

<m:mrow>
<m:mi>a</m:mi>
<m:mi>x</m:mi>
<m:mo>+</m:mo>
<m:mi>b</m:mi>
<m:mi>y</m:mi>

</m:mrow>
<m:mrow>

<m:msqrt>
<m:msup>

<m:mi>x</m:mi>
<m:mn>2</m:mn>

</m:msup>
<m:mo>+</m:mo>
<m:msup>

<m:mi>y</m:mi>
<m:mn>2</m:mn>

</m:msup>
</m:msqrt>

</m:mrow>
</m:mfrac>

</m:math>

200

2.5 Speech Synthesis

After a mathematical expression is recognized from a
document image, we have its syntax notation which is
understandable by the machine. The last step is to let it to
be understandable by blind reader. As discussed earlier,
we consider speech as the best way for the following
reasons: it is easy to understand and accessible to all blind
and visually impaired readers; it is inexpensive, a PC with
a camera will be able to achieve this function without the
requirement of other specialized equipment. Further, the
methodology can be easily adopted to build a stand alone
reading device, which will be the research task of the
Phase II of the project.

Another important reason we propose to use speech is the
availability of the freely-available software, the
MathPlayer [10]. MathPlayer is a Microsoft Internet
Explorer plug-in to display mathematical notation in web
pages, introduced by Design Science Inc. It is based on
MathML technology and can not only convert the
MathML notation to graphics, but also to speech. In the
example of Figure 6, after feeding the string into a
MathPlayer, the expression will be read out as

“ Capital X equals,
begin fraction,
a x plus b y,
over
begin square root,
x square plus y square,
end square root,
end fraction ”

It is worth point out again that, while we choose
MathPlayer as the rendering scheme in the current
research, it is intended for a quick demonstration of the
feasibility. It will be straightforward and easy to build a
stand-alone symbol-to-speech synthesizer after the string
has been detected and formatted.

3. Experimental Results

We have implemented and tested all the algorithms of the
proposed system. Current testing has demonstrated the
effectiveness and efficiency of the proposed method. We
plan to demonstrate the prototype system live during the
conference. In the following, a couple of sample results
are listed for illustration only.

In current experiments, the input data include both
camera-captured and scanned images from general math
textbook and scientific papers. During the testing, the
performance metric was to examine if the math
expression in the images are recognized correctly and
transformed to speech successfully. Figure 6 illustrates
the typical example of an input image in the testing,
where the left-hand column is the input image captured by
a camera, and on the right-hand side are the screen shot of

the MathPlayer display of these recognized expressions
(that is, the system first detects and recognizes the
equations and then converts them into MathML streams,
and then MathPlayer is employed to visualize the
equations to verify the correctness.)

Figure 6. An example illustrating the recognized expressions

from the input document image.

Figure 7 shows a similar example, with a scanned
document as the input.

Figure 7. Results with a scanned document.

4. Conclusion

In this paper, we present an automatic end-to-end system
which can read formulas from captured printed
documents. This would greatly extend the reading
capability of blind and visually impaired readers beyond
simple texts. It is also a first step towards the general goal
of helping them to understand other non-textual visual
contents such as complex graphs, charts, plots, and even
images etc.

This current system is under continued development. In
particular, efforts are being made to make the system
more robust especially with camera-based capture where
the input image quality could be fairly poor unless
extreme care is taken. Also, work is being performed to
expand the capability of the system for processing more
complex, multi-line formulas. A systematic evaluation of
the system by blind readers will also be carried out and
their feedbacks will be incorporated into the next step of
development of the system.

201

References

[1] K.J. Kokjer, The information capacity of the human
fingertip. IEEE Trans. on Systems, Man, and Cybernetics,
17(1), 1987, 100-102.

[2] J. Halliday, Braille vs. Speech: Making Sense of the
Debate. Closing the Gap, 17(6), 1999, 6-7, 26-27, 36.

[3] M. Okamoto & A. Miyazawa, An experimental
implementation of document recognition system for
papers containing mathematical expressions. Structured
Document Image Analysis (Springer 1992), 36–53.

[4] J. Ha, R. Haralick & I. Phillips, Understanding
mathematical expressions from document images. Proc.
Int. Conf. on Document Analysis and Recognition,
Montreal, Canada, 1995, 956–959.

[5] H. Twaakyondo & M. Okamoto, Structure analysis
and recognition of mathematical expressions. Proc. Int.
Conf. on Document Analysis and Recognition, Montreal,
Canada, 1995, 430–437.

[6] K.F. Chan & D.Y. Yeung, Mathematical expression
recognition: A survey. International Journal of Document
Analysis and Recognition, 3(1), 2000, 3-15.

[7] F.M. Wahi, K.Y. Wong & R.G. Casey, Block
segmentation and text extraction in mixed text/image
documents. Computer Graphics and Image Processing,
22, 1982, 375-390.

[8] A. Rosenfeld & A.C. Kak. Digital Picture Processing,
Vol. 2 (New York: Academic Press, 1982).

[9] R.J. Fateman, T. Tokuyasu, B.P. Berman & N.
Mitchell, Optical character-recognition and parsing of
typeset mathematics. Journal of Visual Communication
and Image Representation, 7(1), 1996, 2-15.

[10] MathPlayer. Design Science Inc.

http://www.dessci.com/en/products/mathplayer/

[11] A. Nemeth, The Nemeth code of Braille mathematics
(American Printing House for the Blind, 1956).

[12] J.A. Gardner, Dotsplus-Better than Braille? Proc. Int.
Conf. on Technology and Persons with Disabilities, Los
Angeles, CA, 1993.

[13] W. Postl, Detection of linear oblique structures and
skew scan in digitized documents. Proc. Int. Conf. on
Pattern Recognition, Paris, France, 1986, 687-689.

[14] A. Belaid & J. Haton, A syntactic approach for
handwritten mathematical formula recognition. IEEE
Trans. on Pattern Analysis and Machine Intelligence,
6(1), 1984, 105–111.

[15] Y. Dimitriadis, J. Coronado & C. de la Maza, A new
interactive mathematical editor, using on-line handwritten
symbol recognition and error detection-correction with an
attribute grammar. Proc. Int. Conf. on Document Analysis
and Recognition, Saint Malo, France, 1991, 242–250.

[16] S. Chang, A method for the structural analysis of
two-dimensional mathematical expressions. Information
Sciences, 2(3), 1970, 253–272.

[17] A. Grbavec & D. Blostein, Mathematics recognition
using graph rewriting. Proc. Int. Conf. on Document
Analysis and Recognition, Montreal, Canada, 1995, 417–
421.

[18] P. Chou, Recognition of equations using a two-
dimensional stochastic context-Free grammar. Proc. SPIE
Conf. on Visual Communications and Image Processing
IV, Philadelphia PA, 1989, 852–863.

[19] H. Lee & J. Wang. Design of a mathematical
expression understanding system. Pattern Recognition
Letters, 18, 1997, 289–298.

202

