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ABSTRACT 
Current optical character recognition (OCR), speech 
synthesis, and video technologies have made it possible to 
build reading aid devices for blind and visually impaired 
readers. However, most existing systems can read only 
plain text from printed materials. For scientific books 
such as mathematical or engineering textbooks that are 
full of equations, formulae, tables, and graphical charts, a 
conventional OCR-based system will not be able to 
provide the desired assistance. This paper presents a 
completely automatic method for converting a scanned or 
captured mathematical expression into speech. In 
addressing the challenges in automatic symbol 
recognition, we present several new techniques that make 
the proposed system more robust. The symbol-to-speech 
conversion is facilitated by utilizing a MathML-compliant 
player. 
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1.  Introduction 
 
Most people read through visual sense, but such 
capability is partially or completely limited for the blind 
and visually impaired readers, who typically read through 
tactile (touching) or auditory (hearing) senses. Braille is 
universal tactile media for blind person, which enables 
blind persons to read and write text.  Since most scientific 
materials include mixed text, formulas, charts and graphs, 
how to enable blind readers to understand these materials 
has been a challenging problem. There are many 
standards for mathematical expressions in Braille. For 
example, Nemeth code [11] is most commonly used in the 
U.S., and  Dots-plus [12] is a 2-D Braille math format, 
which is still in experimental stage. In either case, aids 
from sighted person are typically required to  translate 
existing materials into Braille. 
 
In the case of reading mathematical expressions, with a 
Braille-enabled device, the problem seems to be partially 
solved as long as the expressions are first converted to 
Braille via some means. However, this conversion is 

typically time-consuming if it is done by humans, and 
there is no existing complete system that can achieve this 
automatically and reliably, although there have been 
much reported research on automatic method for 
automatic recognition of mathematical expressions. 
Additionally, as a matter of fact, recent technology 
development may render other means other than Braille 
more appropriate. For example, studies from [1] show 
that, in the case of receiving and perceiving information, 
the auditory sense is two orders of magnitude faster than 
the tactile sense.  Also, in [2], J. Halliday discussed the 
strengths and weaknesses of speech and Braille from 
cognitive psychology point of view and stressed the 
importance of combining multiple forms of media 
(speech, Braille, and tactile graphics) for blind student 
education. This becomes feasible with the development of 
new video, audio and computer technology in recent 
years, especially the speech synthesis and OCR 
techniques. Nowadays, OCR-based reading systems for 
the blind population are commonly available for books.  
 
One of the remaining problems is how to make 
mathematical expressions accessible to a blind reader, 
which has not been handled by existing commercial OCR 
systems. One core task in achieving such an objective is 
the automatic recognition of printed mathematical 
expressions, which has been heavily researched since the 
1960s and many methods were published. Among the 
well-known methods are the projection profile cutting [3, 
4, 5], attributed string grammars [14, 15], structure 
specification schemes [16], graph rewriting [17], 
stochastic grammars [18], and procedural translation [19]. 
A survey of these and other methods can be found in [6]. 
It would be difficult to declare any of the methods as the 
best, since each has its advantages and disadvantages. 
Although many methods claim to have accuracy of over 
90%, even a single error may be fatal to the whole 
recognition since a lexical error can cause the total failure 
of syntactic and semantic analysis, which is a core step in 
most of the methods. 
 
In this paper, we present a complete method for 
converting printed mathematical expressions into speech, 
to enable a blind reader to read through equations, 
formulae, etc that are ubiquitous in scientific books. The 
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proposed method employs the special features of 
mathematical expressions to circumvent the difficulty in 
syntactic and semantic analysis:  we simply provide a 
speech representation of the underlying mathematical 
expression without explicit analysis of the meaning of the 
expression. The interpretation is up to the reader, who is 
presumably in a better position to understand the meaning 
of the expression. Consequently, one advantage of the 
proposed method is that the reliability of the system does 
not rely on the correctness of lexical processing. The 
reader may detect an error and/or solve the ambiguity 
through his own judgment.  
 
The rest of the paper is organized as follows. In Section 2, 
we describe the proposed method, with accompanying 
examples to illustrate key steps. Section 3 presents 
additional experimental results, and Section 4 concludes 
with discussion on continuing and future work. 
 

 
 

Figure 1.  Data flow and major processing steps in the 
proposed method. 

 
2.  Proposed Method 
 

The proposed method is a system for converting printed 
mathematical expressions into speech so that a blind 
reader can “read” them through listening. The major 
processing steps of the proposed system and the data flow 
are illustrated in Figure 1. The system digitizes the input 
page, a printed document containing math expressions, 
via a scanner or a digital camera. After some pre-
processing including the segmentation of the math 
expressions from other texts, symbol recognition and 
structure analysis are applied to the extracted region. 
Further syntax and semantic analysis can be performed 
without any transforming since most of the grammar 
operations use tree structure and XML DOM (Document 
Object Model) can present MathML string as a tree 
structure. Finally, the recognized expression is formatted 
into a MathML string, and MathPlayer is utilized to read 
out the math expression. Note that the MathPlayer is used 

here only for illustration purpose and for fast prototyping. 
In a practical system, it is not difficult to develop a stand-
alone symbol-to-speech subsystem. Details of these 
processing steps are explained in the following sub-
sections. 
 
2.1 Image Capture and Pre-processing 
 
The prototype system is implemented on a personal 
computer platform with commodity peripherals , and the 
majority processing is done via software. This would 
facilitate easy adoption of the developed technology, 
assuming that the target user, a blind reader, will have 
access to a reasonably equipped PC.   
 
Image Acquisition: The first step is to acquire the printed 
document into the system as a digitized image. Two 
approaches are used in our experiments, video-camera-
based and scanner-based. PC-based video camera and 
digital camera are very popular nowadays and are 
inexpensive. Thus a camera-based acquisition module 
would be preferred for portability of the system, although 
a scanner-based one would easily provide image of better 
quality and resolution. For a camera-captured image, we 
first obtained a binary image through thresholding the 
gray-level input image. For scanner-based acquisition, we 
use only a low resolution of 100dpi. Currently, emphasis 
is on building a complete end-to-end system, and we have 
to take extra measures to ensure the captured data is clean 
without much noise. So one of the major pre-processing 
steps is to detect and fix any potential misalignment of the 
captured document, as detailed in the below. 
 
Document de-skewing: Even if cares have been taken 
during the acquisition to align the document, a minor 
residual skew may still exist. Most OCR systems require 
horizontally aligned text and are sensitive to skew angles. 
This will also be true in our algorithm for symbol and 
equation recognition since our system is working on 
certain baselines, which require all text lines are properly 
aligned. A simple anti-skew approach is to utilize the 
homogeneous feature of aligned texts. Projection profile 
is the most straightforward method for skew detection and 
it works in the following way [13]. First, we count the 
number of black pixels of each row as a horizontal 
projection profile. It is easy to imagine that, for a 
document image without skew, this profile would reach 
its peaks for text lines and valleys for space lines. For a 
document with minor skew angel, the contrast between 
the peaks and the valleys is reduced. So the problem of 
de-skewing turns out to be an optimization problem where 
the sum of squared profile function is used as the 
objective function and the task is to maximize the 
objective function with respect to the rotation angle. An 
exemplar curve of the objective function with a document 
image originally skewed by o85.5−  is shown in Figure 2, 
where the global maximum at o85.5 , indicating the skew 
angle. After the skew angle is detected, de-skewing is 
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straight forward: we will simply undo the skew by 
rotating the image by the same angle at the opposite 
direction. 
 

 

Figure 2. Projection profile: the objective function 
computed from the projection profile, with respect to the 

rotation angle. 

Although projection profile is simple and effective, it is 
computational expensive since the image must be rotated 
many times, some improvements can reduce the 
computation such as downsampling the image first and 
detecting a coarse skew angle at the lower resolution first 
and then refining in the original resolution.  
 
2.2 Segmentation and Formula Extraction 
 
Before recognition can be applied to an object, either texts 
or formulae, we need to first segment the different 
components so that different processing can be applied 
accordingly. A run length smoothing algorithm from [7] 
can turn the image into blocks of components as 
illustrated in Figure 3. The text blocks and formula blocks 
can be classified according to their different 
characteristics. For example, text lines are grouped into 
thin and long lines together, while formulas are grouped 
into shorter blocks and the margins above and below are 
normally larger than text line spaces. To avoid the 
possible interference of other graph blocks, the extracted 
candidate formula blocks will be further verified in the 
later recognition stage: If a block cannot be recognized to 
be a set of mathematical symbols, they will be rejected. 
 
2.3 Symbol Recognition 
 
It is natural to consider choosing commercial OCR 
software for the recognition task in such a system. 
However, commercial OCR components are designed to 
recognize texts and trained to understand English 
literatures. In math expressions, many different fonts and 
glyphs are in use. In addition, the symbols may stand 
alone and do not conform to the English syntax according 
to some context, which is typically exploited in the OCR 
algorithms. Therefore, we need to design our own OCR 
component. To this end, we first apply the component 
labeling method of [8] to the digitized image to get 

connected components, and then we adopt the feature 
vector method as described in [9], as follows. A feature 
vector for each symbol is defined as a 27-dimension 
vector: evenly divide the symbol into 5x5 subdivisions; 
the percentage of black pixels in each subdivision makes 
up the first 25 elements of the vector; the whole 
percentage of black pixels and the ratio of block height to 
width are put into the remaining two elements. Euclidean 
distance is used to calculate the difference between two 
characters for recognition. In our initial testing, this 
method given in [9] works quite well. 
 
 

 
(a) 

 
(b) 

Figure 3. A sample document (a) and its segmentation 
into object blocks (b). 
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For training data, we use images from two sources: 
images generated by software directly from Microsoft 
Word document and TEX files. These images are 300dpi, 
black and white, and noise-free. We generate our database 
from all fonts that are typically used in Word and TEX, 
and they have been found to cover the general printed 
documents we have tested. 
 
When a new document image is processed for 
recognition, the same component labeling method stated 
above will be applied. An example of the detected 
connected components is illustrated in Figure 4, where the 
bounding boxes specify the components. These 
components will then go through the above-described 
feature computation process and then be recognized 
through comparing the computed feature vector against 
the stored symbol database. 

 
Figure 4. Extracted and segmented formula. Each 

bounding box represents a potential symbol. 

2.4 Expression Recognition 
 
As discussed earlier, there are many formula recognition 
methods. We use a procedural translation [19] method 
for the following reasons. Firstly, what our system 
handles are printed reading materials and we assume that 
the image quality is good enough and thus for such 
printed documents, all texts including formulas are 
aligned to specific horizon baselines which can be utilized 
by procedural translation. Secondly, the result generated 
in our system is an XML string, which grows from top to 
bottom by depth first search. A procedural translation 
matches this order naturally and no tree operation is 
required for grammar processing. In addition, the speed 
performance of such as a method is attractive. 
 
The proposed method works as follows. First, we form 
baselines for all symbols: each symbol is associated with 
a horizontal line position, called its baseline. For all 
normally printed characters, they are aligned to certain 
baselines. New levels such as subscript and superscript 
will start a new baseline. The baseline of symbol is 
determined from the trained data and stored in the 
database. Figure 5 illustrates a formula with baselines 
depicted. 

 
Figure 5. A sample formula with formed baselines 

Next, we organize and format the detected symbols. 
MathML and LaTex are two commonly used math 
notation standard. We use MathML in our system since it 
is more widely supported especially in Web-based 
applications. The steps of formatting the detected symbols 
consist of the following:  
 

1. Start with the longest baseline. Do following 
steps on symbols (or virtual component, see step 
2) belonging to this baseline. 

2. Search all pivotal characters, including fraction 
“─”, root “√”, summation “∑”, integration “∫” 
and product “∏”; Group all symbols within their 
effective area and start a recursive process from 
step 1 to analyze the sub-structure of the 
expression; These symbols will be replaced by a 
void component in future process so they will 
not be analyzed again by other process. 

3. Start from the left to right on symbols of current 
baseline, check around area to check subscripts 
and supscripts, and if there exists any, start a 
recursive process for sub-expression; Form a 
MathML node for each symbol and append to 
the MathML string.  

4. Return the MathML string. 

A MathML string returned from above processes for the 
formula in Figure 4 is given by 
 
<m:math> 

<m:mi>X</m:mi> 
<m:mo>=</m:mo> 
<m:mfrac> 

<m:mrow> 
<m:mi>a</m:mi> 
<m:mi>x</m:mi> 
<m:mo>+</m:mo> 
<m:mi>b</m:mi> 
<m:mi>y</m:mi> 

</m:mrow> 
<m:mrow> 

<m:msqrt> 
<m:msup> 

<m:mi>x</m:mi> 
<m:mn>2</m:mn> 

</m:msup> 
<m:mo>+</m:mo> 
<m:msup> 

<m:mi>y</m:mi> 
<m:mn>2</m:mn> 

</m:msup> 
</m:msqrt> 

</m:mrow> 
</m:mfrac> 

</m:math> 
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2.5 Speech Synthesis 
 
After a mathematical expression is recognized from a 
document image, we have its syntax notation which is 
understandable by the machine. The last step is to let it to 
be understandable by blind reader. As discussed earlier, 
we consider speech as the best way for the following 
reasons: it is easy to understand and accessible to all blind 
and visually impaired readers; it is inexpensive, a PC with 
a camera will be able to achieve this function without the 
requirement of other specialized equipment. Further, the 
methodology can be easily adopted to build a stand alone 
reading device, which will be the research task of the 
Phase II of the project. 
 
Another important reason we propose to use speech is the 
availability of the freely-available software, the 
MathPlayer [10]. MathPlayer is a Microsoft Internet 
Explorer plug-in to display mathematical notation in web 
pages, introduced by Design Science Inc. It is based on 
MathML technology and can not only convert the 
MathML notation to graphics, but also to speech.  In the 
example of Figure 6, after feeding the string into a 
MathPlayer, the expression will be read out as 
 
“ Capital X equals, 
begin fraction,  
a x plus b y, 
over  
begin square root,  
x square plus y square, 
end square root, 
end fraction ” 
 
It is worth point out again that, while we choose 
MathPlayer as the rendering scheme in the current 
research, it is intended for a quick demonstration of the 
feasibility. It will be straightforward and easy to build a 
stand-alone symbol-to-speech synthesizer after the string 
has been detected and formatted. 
 
3.  Experimental Results 
 
We have implemented and tested all the algorithms of  the 
proposed system. Current testing has demonstrated the 
effectiveness and efficiency of the proposed method. We 
plan to demonstrate the prototype system live during the 
conference. In the following, a couple of sample results 
are listed for illustration only.  
 
In current experiments, the input data include both 
camera-captured and scanned images from general math 
textbook and scientific papers. During the testing, the 
performance metric was to examine if the math 
expression in the images are recognized correctly and 
transformed to speech successfully. Figure 6 illustrates 
the typical example of an input image in the testing, 
where the left-hand column is the input image captured by 
a camera, and on the right-hand side are the screen shot of 

the MathPlayer display of these recognized expressions 
(that is, the system first detects and recognizes the 
equations and then converts them into MathML streams, 
and then MathPlayer is employed to visualize the 
equations to verify the correctness.) 
 

 

 
 

 
Figure 6. An example illustrating the recognized expressions 

from the input document image. 
 
Figure 7 shows a similar example, with a scanned 
document as the input. 
 

 
 

Figure 7. Results with a scanned document. 
 
4.  Conclusion 
 
In this paper, we present an automatic end-to-end system 
which can read formulas from captured printed 
documents. This would greatly extend the reading 
capability of blind and visually impaired readers beyond 
simple texts. It is also a first step towards the general goal 
of helping them to understand other non-textual visual 
contents such as complex graphs, charts, plots, and even 
images etc. 
 
This current system is under continued development. In 
particular, efforts are being made to make the system 
more robust especially with camera-based capture where 
the input image quality could be fairly poor unless 
extreme care is taken. Also, work is being performed to 
expand the capability of the system for processing more 
complex, multi-line formulas. A systematic evaluation of 
the system by blind readers will also be carried out and 
their feedbacks will be incorporated into the next step of 
development of the system. 
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