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ABSTRACT 
 
A transfer function algorithm is proposed for locating 
line-to-ground faults on power distribution networks. This 
paper applies transfer function theory to the location of 
ground faults on power distribution networks. Transfer 
function equations are given for single-phase and 
three-phase distribution lines, with criteria for locating 
ground faults. Computer simulation shows that the criteria, 
which are based on the frequency, phase and shape 
characteristics of the transfer function spectrum, 
effectively locate faults in distribution networks. Since it 
is valid for power distribution networks with offset lines, 
and immune to load changes and its parameters can be 
easily measured, the fault location algorithm can be 
widely applied to pave distribution networks. 
 
 
KEY WORDS:  Power distribution networks, Fault 
location, Transfer function. 
 
 
1. INTRODUCTION 
 
In China, non-grounded type distribution networks are 
widely used in 10kV and 6kV transmission systems. 
However, single line-to-ground faults often occur in the 
distribution systems. Because of the radial structure of 
the tree-type offset lines, the limited measuring 
conditions available only in the transformer substation 
of the supply terminal, and the small effects on the 
electrical system caused by single line-to-ground faults, 
fault location in distribution networks is a rather difficult 
problem that remains unresolved. Various fault location 
and diagnosis techniques such as the Travelling Wave 
Fault Location Method and the Impedance Fault 
Location Method have been proposed in the literature. 
However, a survey of previous work has revealed that 
most of the fault location algorithms are developed for 
transmission systems and are not suitable for radial 
distribution networks. Other recent efforts like Port 
Ratio Branch Location Method and the On-line 
Detecting Method by Feeders are also not effective for 
distribution networks due to practicable problems. In the 

Chinese power administration bureau, the traditional 
distribution network fault location method is to select 
the fault line by switching off all offset lines in the 
transformer substation. After selecting the fault line, the 
operators have to find the ground fault point along the 
entire offset networks. To save time and resources and to 
maintain a continuous power supply, automatic methods 
are urgently needed to locate faults quickly and 
accurately. 
 
Based on the analyses of various fault location methods, 
a novel fault location algorithm is proposed by using 
transfer function theory. This paper applies transfer 
function theory to ground fault location on power 
distribution networks, gives transfer function formulas 
for single-phase and three-phase distribution lines and 
describes the criterion for ground fault location. The 
frequency, phase and shape characteristics of the 
transfer function spectrum are shown to be effective 
criterion for fault location on distribution networks 
through numerical analysis and computer simulation of 
actual networks. Through a recursion calculation from 
the upper nodes of the tree type arrangement lines to the 
bottom nodes, the locating algorithm can be applied to 
distribution networks with offset lines. And because it 
selects the ground modal networks as the object of the 
analysis, the location algorithm is not affected by the 
changing of power load. Furthermore, the electrical 
system data needed for the algorithm can be obtained by 
making the measurement only in the supply terminal. 
All these advantages suggest that the location algorithm 
will be widely applied in the near future. 
 
 
2. TRANSFER FUNCTION METHOD FOR 
FAULT LOCATION ON POWER 
DISTRIBUTION NETWORKS 
 
The transfer function, defined as the ratio of the 
response in the frequency domain to the critical pulse, 
effects some basic properties of the system. This paper 
uses the transfer function for fault location in power 
networks. 
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Any distribution network system has a determinate 
structure. An impulse signal is imposed at one terminal of 
a selected main line, a fixed corresponding response can 
be detected at any terminal. When a ground fault occurs, 
the network structure will change and the response will 
differ for the same input signal. Furthermore, the 
responses will also differ for various fault locations in the 
network. The ratio of the input current to the input voltage 
is defined as the transfer function of a distribution 
network system. Criteria for fault location can be 
constructed from the characteristics of the transfer 
function to develop the transfer function method for fault 
location on power distribution networks. The method is 
accurate and is not affected by line voltage changes 
because the applied impulse is not in the same frequency 
range as the line frequency. The method is also very 
sensitive because the ground fault also affects the shape, 
phase and frequency of the transfer function which 
provides much information than a simple ratio. So the 
transfer function method for locating ground faults is 
innovative and practical. 
 
 
2.1. Transfer function in single phase 
line 
 
The distributed parameter lines model is introduced to 
analyze the response in the frequency domain. The series 
resistance, series inductance, shunt capacitance, and shunt 
conductance per unit length are denoted by R,L,C and G 
respectively. Functions U(x,s) and I(x,s)are the line 
voltage and current x km away from the starting terminal. 
The partial differential equations for the distribution 
system are: 
 
 
 
 
 
 
A Laplace transformation,  
 
 
Gives the voltage and current solutions in the frequency 
domain as: 
 
 
 
 
 
 
where               is the characteristic impedance. 
 
 
and                     is the propagation 
constant . 
 
Assume that a ground fault occurs at the point l km away 
from the starting terminal with a fault resistance Z0. If a 

rectangle impulse is then imposed at the base terminal, the 
boundary conditions in the frequency domain are 
 
 
 
The solutions for these conditions are 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The transfer function is then formulated as 
 
 
 
 
 
 
 
 
 
 
where              . 
 
 
 
2.2. Transfer function in three-phase lines  
 
In three-phase lines, the electromagnetic complex 
coupling between lines requires the use of phase-modal 
transformation theory. 
 
 
2. 2.1.  Transfer function for balanced lines 
 
The lines are assumed to be balanced or perfectly 
transposed ones. In this case the partial differential 
equations for the system are: 
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A Laplace transformation, 
 
 
can be used to write the equations as: 
 
 
 
 
 
 
where P is a balanced matrix with the elements 
formulated as follows: 
 
 
 
 
 
 
 
A modal transformation, 
 
 
can be used to write equation (12) and (13) as follows: 
 
 
 
 
 
 
 
where 
 
 
 
 
 
 
 
 
 
 
 
 
 
So the modal voltage equations are  
 

 
 
 
 
 
 
 
 
 
where 
 
 
 
 
 
 
 
The solutions of the modal voltage equations are 
 
 
 
 
 
 
 
In the modal domain, 
 
 
 
where B=R+sL， 
 
 
Let 
 
 
so 
 
 
 
 
 
 
 
 
 
 
The modal current solutions are: 
 
 
 
 
 
Assume that the ground fault occurs at a location l km 
away from the base terminal in phase A with a grounded 
resistance Z0. If a rectangular impulse is imposed on the 
lines at the base terminal, the boundary conditions 
applied to the lines are： 
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The corresponding boundary conditions in the modal 
domain are: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Substitute these conditions into equations (17), (18), (19) 
and (20), the ground modal voltage and current can be 
obtained as: 
 
 
 
 
 
 
 
The transfer function equation in three phases is 
 
 
 
 
 
where 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2.2.  Transfer function for untransposed 
lines 
 
The partial differential equations for the system have the 

same form to untransposed lines. But the parameters’ 
matrixes are changed to : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A Laplace transformation, 
 
 
can be used to write the equations as follows: 
 
 
 
 
 
 
 
where 
 
 
For L and C are not balanced,  P≠PT. 
A modal transformation, 
 
 
can be used to write equation (27) and (28) as : 
 
 
 
 
 
 
 
Where S and Q are dependent on the configuration of the 
untransposed lines, and S=QT. Then 
 
 
and 
 
 
 
 
 
 
 
 
 
 
 
So the modal voltage equations are : 
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The remaining process is similar to that of the balanced 
lines, we can get the transfer function finally. And the 
matrixes S and Q are uncertain, and so, by the similar 
arguments, we can get the transfer functions for 
untransposed lines. 
 
 
2.3. FAULT LOCATION CRITERION 
 
2.3.1. The criterion     
 
To locate the fault, a criterion related to fault distance 
must be abstracted from the characteristics of the transfer 
function. For a single phase line, equation (7) can be 
simplified by assuming a no-loss line. 
 
 
 
 
 
 
For high frequencies,     is neglected, equation (7) 
becomes 
 
 
An analysis of the simplified formula indicates that the 
transfer function spectrum is periodic on the frequency 
axis with a period of         , 
 
where          is the propagation rate of 
electromagnetic waves;    is the period of the transfer 
function on the frequency axis in Hz; l is the distance of 
the ground fault from the base terminal in km. The fault 
location criterion can therefore be determined from the 
frequency characteristics of the transfer function 
spectrum. 
 
The transfer function in three phase line, Eq.(23) can not 
be easily simplified. The system is analyzed numerically. 
The parameter matrixes of R, L, C and G are determined 
for actual distribution lines selected for the research. 
The time step was set to 1 µS with 500 sampling point. 
The Laplace operator is s=j×2π×106 Hz. Equation 
(23) was then solved to produce the transfer function 
amplitude spectrum shown in figure 1, where part (a) 
and (b) represent fault points located 1 km and 2 km 
from the base point, respectively. 
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(a)  1 km 
 
 
 
 
     120 
 
 
 
 
      60 
 
 
 
 
 
 

(b)  2 km 
 

Fig. 1. Numerically determined transfer function spectrum for 
different fault distances 

 
The numerical analysis of transfer function in three 
phase lines has the following characteristics: 
(1) The transfer function spectrum exhibits uniformly 

spaced waves;  
(2) The distance between wave crests along the 

frequency axis is inverse proportional to the fault 
distance, so the fault distance can be calculated from 
the wave crest separator as the fault location 
criterion. 

 
 
2.3.2. Verification of the criterion by 
simulation 
 
EMTP simulation of a distribution line from a 
transformer substation with no offsets is selected to 
verify the criterion. The distributed line parameters are 
input to the EMTP program. The frequency spectrum 
analyses of the calculated results give the amplitude 
spectrums of the transfer function for lines with fault 
distances of 1 km and 2 km, Figure 2. 
 
The EMTP simulation results show transfer function 
spectrums for fault lines exhibit uniformly spaced 
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periodical waves, indicating that the transfer function 
algorithm for ground fault location on power distribution 
networks is effective. 
 
        1.5 
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(a) Fault distance of 1 km 
 
 
 
        1.5 
 
 
 
        1.0 
 
 
 
        0.5 
 
 
 
 
 

(b) fault distance of 2 km 
 

Fig. 2. Simulated transfer function spectrum of lines with different 
fault distances 

 
The EMTP simulation results show transfer function 
spectrums for fault lines exhibit uniformly spaced 
periodical waves, indicating that the transfer function 
algorithm for ground fault location on power distribution 
networks is effective. 
 
 
2.3.3. Discussion at the criterion 
 
(1) Interpretation of the difference between the 
calculated results and the simulation. From the contrast 
between the Figure 1(a) and Figure 2(a), some difference 
can also be found besides the similarity in the main 
principle. Because the figure of simulation calculation is 
obtained by digital signal processing method of FFT, 
that the windows function multiply the sampling data 
leads the differences in characteristic of figure. The 
differences are: (i) at the crest of each wave, the 
simulation result is smooth while the transfer function is 
sharp and (ii) some small peaks appear in the simulation 
due to the boundary windows derived from FFT analysis. 
All these influences from the FFT analysis can be 
reduced by selecting an appropriate windows function 

and filter algorithm. 
(2) Criteria can be developed to identify faults in 
distribution lines with offsets by combining the 
frequency and phase characteristics of the figure. A 
recursive analysis from the main node to the other nodes 
can give the fault offset and the fault distance. A 
detailed example will be given to illustrate the location 
processing. 
 
A typical distribution network with offsets, Figure 3, has 
M as the base node whose measurements occur, A and B 
are nodes with offsets, and C, D and N are nodes at the 
end of lines with equal loads. The length of every offset is 
showed in Figure 3. A ground fault is assumed to occur 
on the AB offset with the fault point 2 km from A. The 
rectangular pulse is applied at the node M, which is the 
coordinate origin. The measured voltage and current at 
node M, u(0,t) and i(0,t), can be used to calculate the 
voltage and current of any node in the line, u(x,t) and 
i(x,t), by using the Bergerion algorithm and the distributed 
parameter line equation. The transfer function in any 
offset of the line can be calculated and analyzed. 
 
                       C 
 
                  3 km 
 
 
M      4km       A         3km      B       3km     N 
 
 
                                    2km 
 
 
                                          D 
 

Fig. 3. An example of distribution networks with offsets 
 
The transfer function for node M, PMA(s), is calculated 
first to determine whether the fault is located in the offset 
MA. Experience has shown that if the fault is located in 
the offset MA, the transfer function for the offset MA has 
uniformly spaced waves, shows in Figure 4(a). If the 
transfer function does not have the principle, the offsets 
are analyzed recursively step by step. 
 
From the calculated voltage and current at node A, PAB(s)  
and PAC(s), which are the transfer function of offsets AB 
and AC, are given in Figures 4(b) and 4(c). Analysis of 
various results has shown that for the offsets at one node, 
the offsets without the grounded fault are equivalent to an 
open circuit and the offset containing ground fault is 
equivalent to a line with a grounded resistance at the end 
of the line. A phase difference of π/2  occurs between 
the two types of lines.  By comparing the phases of all 
the offsets at one node, the offset with the fault can be 
identified and the analysis can proceed recursively to the 
offset with the fault. For this example, comparing the 
phases of transfer functions in Figure 4(b) and 4(c) show 
that offset AC is an open circuit line, so the recursive 
calculation should analyze offset AB. Furthermore, since 
the peaks are uniformly distributed in Fig. 4c, offset AB 
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contains the ground fault. The fault distance, calculated 
from a distance measuring formula of this example, is 
1.88 km away from node A. 
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(a) Spectrum of offset MA 
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(b) Spectrum of offset AC 
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(c) Spectrum of offset AB 
 
Fig. 4. Transfer function spectrum for offsets MA, AB and AC for fault 

located in offset AB 
 
Location results for faults occurring in other locations are 
given in Table 1. 
 
More complex distribution networks with more offsets 
can be analyzed in the same way. Therefore, the criterion 
derived from the combined information of the shape, 
frequency and phase characteristics of the transfer 

function in all the offsets can be effectively used to locate 
ground faults in practical distribution networks. 
 
Tab. 1.  Sample of fault location in a distribution network with offsets, 

Fig. 3 

Example  Ground 
resistance R /Ω 

Assumed 
fault offset  

1 10.0 MA 
2 
3 

10.0 
10.0 

AC 
AB 

4 10.0 BN 
 

Assumed fault 
distance l /km 

Calculated 
fault offset  

Calculated fault 
distance l /km 

2.0 MA 1.8844 
1.0 
2.2 

AC 
AB 

1.0760 
2.1134 

1.3 BN 1.3841 
 
(3) Formula for determining fault distance. For 
distribution lines with the uniform parameters, formula 
can be easily obtained for determining fault distance. 
For any offset in a network, the fault distance is 
approximately proportional to the reciprocal of the 
distance between peaks. Therefore, the formula for 
determining the fault distance is 
 
                           , 
 
where l is the fault distance and f is the distance between 
peaks. The coefficient K can be calculated from several 
sample calculations with assumed faults at several 
different locations. K is different for lines with different 
parameters and must be recalculated for each line. In the 
example of this paper,                . For 
non-linear situations in practical networks, the formula 
can be replaced by a fault dictionary to provide more 
exact locations. 
 
(4) Insensitivity to load. Since transfer function 
algorithm for locating ground faults uses the ground 
modal networks, the algorithm is not affected by load 
changes. The algorithm can be used by just measuring 
data in one line terminal at the transformer substation, so 
it does not need to communicate and detect continuously. 
Therefore, the method is of great practicable use. The 
main work in the fault locating algorithm lies in the 
digital signal processing needed to calculate the transfer 
function peaks. 
 
 
3. CONCLUSION 
 
(1) A transfer function algorithm is developed for 
locating ground faults on power distribution networks. 
The transfer function theory is applied to locate ground 
faults on single phase and three phase distribution 
networks. A criterion is presented for locating ground 
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faults. Simulation shows that the criterion based on the 
frequency, phase and shape characteristics of the transfer 
function frequency spectrum can effectively and 
accurately locate ground faults in distribution networks 
with offsets. 
 
(2) Since the methodology is immune to the effects of 
load changes and the necessary measurements are very 
convenient, it can be widely used for fault location in 
power distribution networks. 
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