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ABSTRACT 
 
This paper presents the application of fast computation 
Hopfield neural network to economic dispatch (ED) of 
generators having piecewise quadratic cost functions. 
Traditionally a convex cost function for each generator is 
assumed. However, it is more realistic to represent the 
cost function as a piecewise quadratic function rather than 
single convex function. In this study, multiple intersecting 
cost functions are used for each unit. The modified 
Hopfield method employs a linear input-output model for 
neurons. Formulations for solving the ED problems are 
explored. This method determines the weight factors of 
the energy function by direct computation where as in the 
usual Hopfield methods weight factors are calculated by 
trial and error method. The solution to the ED problem is 
also obtained by direct computation. The effectiveness of 
this method is tested by applying it to a sample system. 
Computational results manifest that the method has a lot 
of excellent performances, and it is superior to other 
methods in many respects. 
 
 
KEY WORDS 
Artificial Intelligence Applications, Economic Dispatch, 
Hopfield model, piecewise quadratic cost function. 
 
 
1.INTRODUCTION 
 
In power system operation and planning, economic 
dispatch is one of the most important criteria. 
Traditionally, the ED problems were solved with each 
generating unit having a single cost function. However, 
certain practical thermal units use different fuels like coal, 
natural gas and oil. This multiple fuel options lead to 
piecewise quadratic cost functions. 
 
  
Lin and Viviani [1] used the lagrangian function for 
solving the ED problem with segmented piecewise 
quadratic cost functions. Park et al. [2] presented the 
solution  to the ED problem with piecewise  quadratic cost  
 

functions by using Hopfield neural network. Recently, 
Lee et al. [3] proposed solutions to the ED problem using 
adaptive Hopfield neural networks. The authors have 
compared the solution with those of the numerical 
approach and the conventional Hopfield neural network 
approach [2]. It has been shown that in the adaptive neural 
network approach the number of iterations required for 
converging to the optimum is half of the conventional 
Hopfield neural network method. 
 
  
The Hopfield methods discussed above apply the iterative 
procedures thus require a large quantity of computation 
time. On the other hand Su and Chion [4] proposed the 
fast computation Hopfield neural network method to solve 
ED problems with each generating unit having a single 
cost function and the method is extended to solve the ED 
problem with transmission losses [5]. It does not include 
any iterative procedure and therefore the computational 
efforts were greatly reduced. 
 
 
This paper investigates the application of the fast 
computation Hopfield neural network method to solve the 
ED problem with multiple fuel options for each generator. 
To show the effectiveness and validity of this method, it is 
implemented on a sample system and the results are 
compared with those obtained in the conventional 
Hopfield neural network approach [2]. 
 
 
2. FORMULATION OF ED PROBLEM 
 
The objective of ED is to determine the optimal loadings 
for all on-line dispatchable units, which minimizes the 
total fuel cost while satisfying a set of constraints. It can 
be formulated as follows.  
 
Fuel cost: Traditionally, in the ED problem, the fuel cost 
of each generator is represented by a single quadratic 
function. Here, owing to multiple fuel options, this cost 
function is piecewise quadratic. Hence the ED problem 
with piecewise quadratic cost function is defined as:    
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where 
ajm, bjm, cjm : cost coefficients of the jth generator for fuel – 

type m 

Fj(Pj)        : fuel cost of generator j 

f  : total fuel cost 
Pj  : power output of jth generator 

n     : number of generators 
Power-balance constraint: 
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where PD is the total load demand and PL is the 
transmission loss.  
Capacity-limits constraint: 
The power output level of generator j, should be between 

its minimum Pj,min and maximum Pj,max:                                
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3.  MAPPING OF THE ED INTO       

HOPFIELD NETWORK 
 
The dynamic characteristic of each neuron can be 
described by the following differential equation [4]  
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where   
Ui  :  the input of neuron i 

Tii : the self connection conductance of neuron i 

Tij : the interconnection conductance from the output of 

neuron j to the input of neuron i 

Ii   : the external input to neuron i 

Vj  : the output of neuron j 

The energy function of the continuous Hopfield model 
can be defined as  
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To solve the ED problem using Hopfield method, an 
energy function including both power mismatch, Pm, and 
total fuel cost, Fi, is defined as follows: 
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where positive weighting factors A and B introduce the 
relative importance for their respective associated terms. 
With the application of the conventional Hopfield method 
to the ED problem, we can represent the power output 
value Pi using the output Vi of neuron i with a modified 
sigmoidal function described as follows [4]: 
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where 
uo  : the shape constant of the sigmoidal function 
By comparing (6) with (5), we get 
 
Tii  =  - A - Bci                                                                                                      (8) 

Tij  = - A                                                                             (9) 

Ii   = A(PD+ PL) - Bbi/2                                                    (10) 

In proceeding the numerical computation, the following 
dynamic movement model will be used.  
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where  
∆Ui : the differential variation of input Ui 

∆t   :  the differential variation of time 
 
The updating process using the above movement model 
for each neuron is repeated until the energy function 
converges to its minimum. 
 
 
4.  THE FAST COMPUTATION       

HOPFIELD METHOD 
 
The input-output relationship of a neuron is expressed by 
a modified sigmoidal function in the conventional 
Hopfield method [2]. This type of input-output curve 
possesses saturation phenomena at its two ending regions. 
The saturation phenomena could result in incorrect 
dispatching levels for units during the iterating process. 
That is, a larger input variation might result in a smaller 
output change, or vice versa, as shown in Fig. 1, where 
 
|∆Ui

’| >  |∆Ui| while   |∆Pi
’|  <  |∆Pi|                                 (13)    

On the other hand, the shape constant uo of the sigmoidal 
function described in (7) affects the changing rate of the 
neuron’s output Pi, with respect to the change of input, Ui. 
Too large a value of uo will result in a much slow 
converging speed in the computation process. Conversely,  



too small a value of uo will cause the function to behave 
as a two-value function, which often renders the neuron’s 
output to be either at its upper limit or lower limit. 
Therefore, the selection of uo is sophisticated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             

          
         
 
 

Fig.1 Modified sigmoid function 
 

 
To avoid the problems resulting from curve saturation and 
improper selection of uo, a novel linear model is proposed 
to describe the input-output relationship for the neuron. 
 
 
4.1 Linear neuron model and energy function 

  
A linear input-output model, hi(Ui), for a neuron can be 
written as 
 Pi  = hi (Ui)  

     =[(Ui -Umin) / (Umax - Umin)].(Pi max - Pi min) + Pi min      

       ≡ K1iUi +K2i       ∀  Umin ≤ Ui  ≤ Umax                                            (14) 

 where both K1i and K2i  are constants, and  

         K1i = (Pi max - Pi min)/(Umax  -Umin)                               

         K2i = -K1iUmin + Pi min                                                    

and  
Pi  =  hi(Ui) =  Pi max       ∀   Ui >Umax                                  (15)      

Pi  =  hi(Ui) =  Pi min        ∀   Ui <Umin                                  (16) 

 
 
The linear input-output relationship of neuron i is shown 
in Fig. 2. It is a piecewise continuous and monotonously 
increasing function, i.e., hi’(Ui) ≥ 0.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.2 Linear input-output function 
 
 

4.2 Computational expressions 
 
Traditionally, the Hopfield method applies the sigmoidal 
function to describe the neuron’s input-output 
characteristics and utilizes the iterative procedures to 
solve the problems. The proposed method employs the 
linear input-output model instead of the sigmoidal 
function, and the results are obtained by straightforward 
computation instead of iterative procedures. Moreover, 
power mismatch, Pm, can be preassigned to any small 
value such that the dynamic equation of a neuron has the 
merit that it is not related to any other neurons. 
Consequently, each neuron’s dynamic performance can be 
simply described using a first-order linear ordinary 
differential equation. The expressions for directly 
computing the solutions are developed below. 
       
 
The dynamic equation of a neuron is given as       
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Substituting (8), (9), and (10) into  (17), the dynamic 
equation becomes 

)/dP(B/2)(dFAP/dtdU iimi −=                                        (18) 
 
 
The first term on the right side of the above equation 
bears no relation to the power output of unit i. However, 
the second term is related to the incremental cost 
associated with unit i. Hence, the dynamic performances 
of the neurons will bring about such a dispatching 
criterion that the units with lower incremental cost have a 
priority of further dispatching over the units with higher 
incremental cost. 
 
 
Then, substituting  (14) into  (18), the dynamic equation 
becomes 
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Here, 3iK  has relation to decaying speed, and its value is 
negative. 
Solving (19), the neuron’s input function, (t),Ui  is 
obtained as: 
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From  (14), the neuron’s output function, Pi(t), is obtained 
as: 
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where 
    KAB=A/B 

 
 
It is especially worth noting that two weighting factors A 
and B of the energy function used in the conventional 
model are now replaced by the factor KAB.  Therefore, 
difficulty of selecting the weighting factors is naturally 
avoided for the proposed model. Because K3i <0, the 
exponential term on the right side of the above equation is 
of transient existence. This term decays exponentially and 
finally becomes very small. Eventually, setting   t=∞ for 
(21), we have, 

))/(2cbP(2K  )(P iimAB i −=∞                                    (22) 
Here Pi(∞) represents the optimal generation level for unit 
i, which is the solution we want. Also, from (22), it can be 
seen that Pi(∞) is not related to parameters (Umax-Umin) 
and Pi(0), which is reasonable and comprehensible, and 
actually is another merit of the proposed model. 
 
 
Applying (14) and (22) to (21), a more simple formula for 
the generation function is given as 
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The power mismatch Pm, which is, defined as the load 
demand less the total generating power is expressed as 
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where 
   n :  Number of the total units 
Substituting (22) into (24) yields 

(25)                                PP))/(2cbP(2K
n

1i

mDiimAB∑
=

−=−

Rearranging the above equation, we obtain 
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Appropriately selecting KAB, we have, 
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Finally, a useful approximate formula for Pm can be 
written as  
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The expressions (22), (23) and (26) together make the 
Hopfield model for ED problems a direct computation. 
 
 
4.3 The solution steps 
 
The main computational steps are as follows: 
 
Step   1 :  Assume Pm, Umax and   Umin. 

Step   2 :  Initialise  Pi 
(k)(∞), k=0. 

Step 3 : Select the cost coefficients corresponding to 
Pi

(k)(∞). 
Step 4 : Calculate K3i and KAB using  (19) and  (26) 

respectively. 
Step  5 :  Let k=k+1. Compute generation level Pi(∞) 

using (22) for all non-dispatch units. 
Step 6 :  Check the unit generation constraints. If any 

units violate their generation                      
limits, go to step 7; Otherwise, the solution is 
obtained, and go to step 9. 

Step   7 :    
a) For each violated unit, compute time t (For 

convenience, imagine t as the time.  Actually, t 
is a dimensionless variable.), to reach its 
generating limit using (23). (Initially, a set of 
feasible power loading for all units is 
required.) 

b)     From (a), identify the unit which first reaches 
its generation limit (i.e., the one with the 
smallest t computed in (a)), and dispatch the 
identified unit to output its limiting power that 
it hits. 

c) Exclude the identified unit mentioned in (b) 
from the system which consists of non-
dispatch units. 

d) Subtract the limiting power mentioned in (b) 
from the total demand to get new total 
demand. 

Step   8  :  Go to step 3. 
 



Step   9 :  Is |Pi 
(k-1)(∞) - Pi

(k)(∞)| < tolerance for all units?  

If yes go to next step; otherwise, go to step 3. 

Step  10 :  Stop the computation. 
 
 
5. SIMULATION RESULTS AND 

DISCUSSIONS 
 
The fast computation Hopfield neural network method is 
applied to the ELD problem with nonconvex cost 
functions. In reference [2] this problem was solved by 
conventional Hopfield neural network method, which is 
an iterative method. In order to prove the effectiveness of 
the proposed fast computation method, the data used in 
the conventional Hopfield neural network method [2] 
have been used. The optimal power dispatch with system 
demands rising from 2400 MW to 2700 MW is shown in 
Table 1 and Table 2. 
  
 
        Table 1. Results using conventional 

                   Hopfield neural network method 
       

2400 
MW 

2500  
MW 

2600  
MW 

2700  
MW 

S U 

F G F G F G F G 

 1 1 192.7 2 206.1 2 215.3 2 224.5 
 2 1 203.8 1 206.3 1 210.6 1 215.0 
 3 1 259.1 1 265.7 1 278.9 3 291.8 

1 

 4 2 195.1 3 235.7 3 238.9 3 242.2 
 5 1 248.7 1 258.2 1 275.7 1 293.3 
 6 3 234.2 3 235.9 3 239.1 3 242.2 

2 

 7 1 260.3 1 269.1 1 286.2 1 303.1 
 8 3 234.2 3 235.9 3 239.1 3 242.2 
 9 1 324.7 1 331.2 1 343.5 1 355.7 

3 

10 1 246.8 1 255.7 1 272.6 1 289.5 
GT     2399.8       2499.8       2599.8      2699.7 
C     487.87       526.13       574.26      626.12 

 
S: subsystem 
F: fuel 
U: unit 
G: Unit Generation (MW) 
GT: Total Generation (MW) 
C: Total cost ($) 
 
 
The results of the conventional Hopfield method and fast 
computation Hopfield method are shown in Table 1 and 
Table 2 respectively. Comparing Table 1 with Table 2, the 
following results are observed. First, the fast computation 
Hopfield neural network method satisfies the total load 
exactly, but, the conventional Hopfield method had a 
maximum power mismatch of 0.3 for 2700 MW load. 
Second, the total cost obtained by the fast computation 
neural network method is nearly the same as the 
conventional Hopfield neural network method.  
 

      Table 2. Results using fast computation 
      Hopfield neural network method 

       
2400  
MW 

2500  
MW 

2600  
MW 

2700  
MW 

S U 

F G F G F G F G 
 1 1 190.9 1 194.8 2 211.0 2 219.6 
 2 1 203.0 1 205.0 1 208.4 1 212.3 
 3 1 255.7 1 261.5 1 271.5 1 282.4 

1

 4 3 233.5 3 234.9 3 237.4 3 240.0 
 5 1 244.4 1 252.5 1 266.1 1 281.0 
 6 3 233.5 3 234.9 3 237.4 3 240.0 

2

 7 1 241.8 1 249.2 1 261.5 1 275.1 
 8 3 233.5 3 234.9 3 237.4 3 240.0 
 9 1 322.0 3 382.8 3 406.6 3 432.5 

3

10 1 241.7 1 249.5 1 262.7 1 277.1 
GT      2400.0     2500.0       2600.0     2700.0 
C        485.48        532.86        579.15       628.69 

 
 
The simulation time of the conventional Hopfield method 
with IBM PC- 1GHz is more than one minute, while the 
simulation time of the fast computation Hopfield method 
is less than 25 seconds.  
 
  
6. CONCLUSIONS 
 
The application of fast computation Hopfield neural 
network to economic dispatch problem with multiple fuel 
options is presented. The proposed algorithm has been 
tested on a ten-unit system. In comparison with the 
conventional Hopfield neural network approach the cost 
obtained by the proposed algorithm are nearly the same. 
The proposed algorithm is direct, powerful and easy to 
implement. These features render it as the most suitable 
method for solving practical economic dispatch problems 
with multiple fuel options. 
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