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ABSTRACT 
This paper deals with the application of genetic 
algorithms for optimizing the parameters needed for 
conventional automatic generation control (AGC) applied 
to interconnected hydro power systems. A two-area hydro 
power system is considered to exemplify the optimum 
parameter search. Digital simulations are performed aided 
by the integrated Simulink/Matlab environment in 
conjunction with the genetic optimization process. Several 
integral performance indices, or cost functions, are 
considered in the search for the optimal AGC parameters. 
The work utilize a more elaborate feedback control 
strategy, such as the proportional-plus-integral-plus-
derivative type, within the decentralized frame. The 
results reported in this paper have not been obtained 
before and they demonstrate the effectiveness of the 
genetic algorithms in the tuning of such a process. 
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1.  Introduction 
Many investigations have been reported in the past 
pertaining to AGC of a large interconnected power system 
with different types of units (steam, hydro, diesel) with 
either conventional or computational intelligence 
techniques, i.e. [1-5]. A net interchange tie-line bias 
control strategy has also been widely accepted by utilities. 
The frequency and the interchanged power are kept at 
their desired values by means of feedback of the area 
control error (ACE) integral, containing the frequency 
deviation and the error of the tie-line power, and 
controlling the prime movers of the generators. The 
controllers so designed regulate the ACE to zero. For each 
area, a bias constant determines the relative importance 
attached to the frequency error feedback with respect to 
the tie-line power error feedback; the bias is very often 
equal to the natural area frequency response characteristic 
[1]. Classical AGC corresponds basically to industry 

practice for the past years or so. The key assumptions are: 
(a) the steady-state frequency error following a step-load 
change should vanish and also the transient frequency and 
time errors should be small, (b) the static change in the tie 
power following a step-load in any area should be zero, 
provided each area can accommodate its own load change 
and (c) any area in need of power during emergency 
should be assisted from other areas. The key advantage of 
the classical AGC is that the control strategy is a totally 
decentralized one, in the sense that each control area 
carries out its own frequency and power regulation using 
locally gathered real-time information. 

The transient performance of the interconnected power 
system with respect to the control of the frequency and tie 
line powers obviously depends on the value of the 
controllers' gains and the frequency bias. The optimum 
parameter values of the classical AGC have been obtained 
in the literature (using integral or proportional-plus-
integral) by minimizing the popular integral of the 
squared errors criterion (ISE) [1],[4]. This criterion has 
been used because of the ease of computing the integral 
both analytically and experimentally. A characteristic of 
the ISE criterion is that it weights large errors heavily and 
small errors lightly and it is not very selective. A system 
designed by this criterion tends to show a rapid decrease 
in a large initial error. Hence the response is fast, 
oscillatory and the system has poor relative stability [6]. 

In this work, we investigate the optimum adjustment of 
the load frequency controllers used in an interconnected 
hydro-power system, with the aim of genetic algorithms 
[7], and also, a set of performance indices which are 
various functions of error and time [8]. In this way, 
someone can observe the various performances that such 
a kind of power system might have when a different 
performance index is used. It should be noted that to the 
extent of the authors' knowledge, this kind of optimization 
has not been done in the literature. Finally, it is envisaged 
that the synthesis procedure highlighted in this paper 
could be of practical significance for tuning classical 
AGC parameters for an interconnected hydro-electric 
power system. 
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2.  Genetic Algorithms   (1) = + +X AX BU ΓP

=Y CXGenetic algorithms (GAs) are global search techniques, 
based on the operations observed in natural selection and 
genetics [9]. They operate on a population of current 
approximations – the individuals – initially drawn at 
random, from which improvement is sought. Individuals 
are encoded as strings (chromosomes) constructed over 
some particular alphabet, e.g. the binary alphabet {0,1}, 
so that chromosome values are uniquely mapped onto the 
decision variable domain. Once the decision variable 
domain representation of the current population is 
calculated, individual performance is assumed according 
to the objective function which characterizes the problem 
to use the variable parameters directly to represent the 
chromosomes in the GA solution. At the reproduction 
stage, a fitness value is derived from the raw individual 
performance measure given by the objective function, and 
used to bias the selection process. Highly fit individuals 
will have increasing opportunities to pass on genetically 
important material to successive generations. In this way, 
the genetic algorithms search from many points in the 
search space at once and yet continually narrow the focus 
of the search to the areas of the observed best 
performance. The selected individuals are then modified 
through the application of genetic operators, in order to 
obtain the next generation. Genetic operators manipulate 
the characters (genes) that constitute the chromosomes 
directly, following the assumption that certain genes code, 
on average, for fitter individuals than other genes. Genetic 
operators can be divided into three main categories [10], 
reproduction, crossover, and mutation. Reproduction 
selects the fittest individuals in the current population to 
be used in generating the next population. Crossover 
causes pairs, or larger groups of individuals to exchange 
genetic information within one another. Mutation causes 
individual genetic representations to be changed 
according to some probabilistic rule. GAs are more likely 
to converge to global optima than conventional 
optimization techniques, since they search from a 
population of points, and are based on probabilistic 
transition rules. Conventional optimization techniques are 
ordinarily based on deterministic hill-climbing methods, 
which, by definition, will only find local optima. GAs can 
also tolerate discontinuities and noisy function 
evaluations. 

where X, U and P are the state, control and disturbance 
vectors respectively and A, B and Γ are real constant 
matrices of appropriate dimensions. According to Fig. 1, 
the state, control and disturbance vectors are defined as 
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With respect to both Fig. 1 and the Appendix, ΔPgh is the 
incremental generation change, ΔPXgh is the incremental 
governor water valve position change, ΔPd is the 
incremental load demand change, Δf is the incremental 
frequency deviation, ΔPtie is the incremental change in tie-
line power, ΔPch is the incremental change in speed 
changer position, f is the nominal system frequency, H is 
the inertia constant, D is the load frequency constant 
(Kpsh=1/D, Tpsh=2H/Df), T12 is the synchronizing 
coefficient (T12=Ph(max)cos(δ1-δ2)/Prh), R is the speed 
regulation parameter, Tgh is the governor time constant, Th 
is the turbine time constant and Tw is the water time 
constant. The area control error (ACE) for the ith area is 
defined as 
 ( ) ( ) ( ) ( )i i i

h tie i hiACE t e t P t B f t= = Δ + Δ  (5) 
where Bi is the frequency bias constant. The conventional 
automatic generation controller found in literature has a 
linear integral only control strategy of the form 
  (6) ( )i i

i Iu K e t d= − ∫ t
In this work, for achieving the basic objectives of LFC, 
i.e., zero steady-state error in frequency and tie-line 
power, the discrete type PID controller is used (taken 
from Simulink/Matlab library) which is shown in Fig. 2. 
In this case, the control law for the ith area (i=1,2) is 

 ( ) ( ) ( )i
i i i i i

i P I D

de t
u K e t K e t dt K

dt
⎛ ⎞

= − − − ⎜⎜
⎝ ⎠
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which when implemented in the Simulink/Matlab 
environment takes the form 
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where KI
i, KP

i and KD
i are the gains of the PID controllers, 

Ts is the sampling time, Tsim is the total simulation time 
and k=1,2,..,Tsim/Ts. In this study, the optimum values of 
the “K” parameters and Bi which minimize a whole set of 
different performance indices, are easily and accurately 
computed using a genetic algorithm. In a typical run of 
the GA, an initial population is referred to as the 0th 
generation. Each individual in the initial population has an 
associated performance index value. Using the 
performance index information, the GA then produces a 
new population. The application of a GA involves 
repetitively performing two steps: (a) the calculation of 
the performance index for each of the individuals in the 

3.  Load Frequency Control Problem 
 
3.1. Power System Model and Control Strategy 
The load frequency control (LFC) system investigated 
here, is composed of an interconnection of a two area 
hydro power system. The nominal parameters of the 
system are given in the Appendix. Fig. 1 shows the 
transfer function block diagram of a two-area small 
perturbation model of an interconnected hydro power 
system. The dynamic behaviour of the LFC system is 
described by the linear vector differential equation 
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Fig. 1. Transfer function model of a two area hydro power system implemented in Matlab/Simulink environment. 

 

 
 

Fig. 2. Matlab/Simulink used model for discrete type PID 
controller. 
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Fig. 3. Simplified flowchart of a typical GA. 

 
current population. To do this, the system must be 
simulated to obtain the value of the performance index, 
(b) the GA then produces the next generation of 
individuals using the reproduction, crossover and 
mutation operators. These two steps are repeated from 
generation to generation until the population has 
converged, producing the optimum parameters. A 
flowchart of the GA optimization procedure is given in 
Fig. 3. 
 
3.2. Performance Indices under Consideration 
As it was aforementioned, in this work, we investigate the 
optimum adjustment of the load frequency controllers 
used in an interconnected hydro-power system, with the 

aim of genetic algorithms guided by a set of performance 
indices which are various functions of error and time. 
These indices include: 
(a) The integral of the square of the error criterion (ISE) 
which is given by: 

 ( )2

0

 
∞

= ∫ISE e t dt  (9) 

(b) The integral of time-multiplied absolute value of the 
error criterion (ITAE) which is given by: 

 ( )
0

 
∞

= ∫ITAE t e t dt  (10) 

This criterion penalizes long duration transients and is 
much more selective than the ISE. A system designed by 
use of this criterion exhibits small overshoot and well 
damped oscillations. 
(c) The integral of time-multiplied square of the error 
criterion (ITSE) which is given by: 

 ( )2

0

 
∞

= ∫ITSE te t dt  (11) 

This criterion weights large initial error lightly, while 
errors occurring late in the transient response are 
penalized heavily. This criterion has a better selectivity 
than the ISE. 
(d) The integral of squared time-multiplied absolute value 
of the error criterion (ISTAE) which is given by: 

 ( )2

0

 
∞

= ∫ISTAE t e t dt  (12) 

(e) The integral of squared time-multiplied square of the 
error criterion (ISTSE) which is given by: 

 ( )2 2

0

 
∞

= ∫ISTSE t e t dt  (13) 
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Table 1. Optimum values of controllers' gains (α=0.065, β=0.0) Even though performance indices (c) through (e) have not 

been applied to any great extend in practice due to the 
increased difficulty in handling them, they are considered 
here. When the hydro-power system model (Fig. 1) is 
taken into account and also a discrete time control is 
performed, eqs. (9)-(13), are then translated into the 
following forms respectively 

 ISE ITAE ITSE ISTAE ISTSE 
0.48240 0.19745 0.05610 0.01421 0.04269 KP 

-0.05818 -0.12029 -0.08984 -0.27820 -0.14652 KI 
-2.15543 -1.55056 -1.48861 -1.45385 -1.39700 KD 

0.0063 0.0127 0.0079 0.0101 0.0070 J 
 
Table 2. Optimum values of controllers' gains (α=β=0.065) 

 ( )2 2 2
1 1

0

α β= = Δ + Δ + Δ Δ∑
Tsim

tie
 ISE ITAE ITSE ISTAE ISTSE 

2J ISE P f f t  (14) 
0.04435 0.07361 0.05565 0.09422 0.07132 KP 

-0.08173 -0.17408 -0.09666 -0.11207 -0.11535 
 (2 1

0
α β= = Δ + Δ + Δ∑

Tsim

tie )2 ΔJ ITAE t P f f t  (15) 
KI 

-1.48366 -1.35337 -1.62909 -1.45302 -1.42011 KD 
0.0063 0.0079 0.0065 0.0068 0.0067 

 ( )2 2 2
3 1

0

α β= = Δ + Δ + Δ∑
Tsim

tie 2 ΔJ ITSE t P f f t  (16) 
J 

 

 ( )2
4 1

0

α β= = Δ + Δ + Δ∑
Tsim

tie 2 ΔJ ISTAE t P f f t  (17) 

Table 3. Sub-optimum values of controllers' gains (α=β=0.065) 
                found in [11] 

 ISE 
0.31775 KP 

 ( )2 2 2 2
5 1

0

α β= = Δ + Δ + Δ∑
Tsim

tie
0.01260 KI 2 ΔJ ISTSE t P f f t  (18) 

-0.43530 KD 
0.0195 J where Jm (m=1..5) is the objective function as described in 

Section 2, and α, β are penalty coefficients. To compute 
the optimum parameter values, a unit step load change is 
assumed in area 1 and the performance index is 
minimized using the GA. In the next Section, the 
optimum values of the parameters KP

i, KI
i, KD

i and Bi 
resulting from minimizing the five different performance 
indices are presented. Two cases for each performance 
index were considered: 
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 Case 1: α=0.065, β=0.0 (only frequency deviations in area 
1 are penalized) and, (a) 
Case 2: α=β=0.065 (frequency deviations in both areas 
are equally penalized). 
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4.  Simulation and GA Results 
To calculate the performance index, digital simulations of 
the system were performed over a solution time period 
(Tsim) of 120sec, for each of the individuals of any 
current population. The values of the performance indices 
thus obtained, were fed to the GA in order to produce the 
next generation of individuals. The procedure is repeated 
until the population has converged to some minimum 
value of the performance index producing near optimal 
parameters set. The GA used here utilizes direct 
manipulation of the parameters. The following GA 
parameters were used in the present research: Population 
size=60, maximum number of generations=40, Crossover 
probability=1.0, mutation probability=0.005. The 
particular choices of these parameters are generally 
problem dependent. However the GA performs best with 
a relatively high crossover probability, small mutation 
probability and a moderate population [9]. 

(b) 
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(c) 

: (ISE ) : (ITAE) : (ITSE)
: (ISTAE ) : (ISTSE)  For each case study, two sub-cases were examined. First, 

the bias constant B was set to a value currently used by 
the industry, i.e. B=D+1/R. The optimum settings for the 
parameters KP

i, KI
i, KD

i previously unavailable in the 
literature (except for the ISE performance index found in 
[11]), were obtained using the GA. Tables 1 and 2 
summarize these values for all the performance indices 

Fig. 4. Time responses for Case 1: (a) Δfh1,(b) Δfh2, (c) ΔPtie . 
(fixed B=D+1/R) 

considered. Table 3 shows the optimum corresponding 
values found in [11]. From Table 2 (equal penalization of 
the frequency deviations) and Table 3, it is clear that the  
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Table 4. Optimum values of controllers' gains and frequency 
                bias (α=0.065, β=0.0) 
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 ISE ITAE ITSE ISTAE ISTSE 
1.17873 0.35307 0.52924 0.52589 1.13704 KP 

-0.09122 -1.96036 -0.10139 -1.68106 -1.42591 KI 
-1.63755 2.39781 -1.86385 2.35748 1.50780 KD 
0.14986 0.00591 0.26062 0.01317 0.00900 B 

0.0095 0.0165 0.0096 0.0110 0.0106 J 
 
Table 5. Optimum values of controllers' gains and frequency 
                bias (α=β=0.065) 

(a) 
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 ISE ITAE ITSE ISTAE ISTSE 
1.24019 0.75652 1.02507 0.76881 0.70238 KP 

-1.40077 -1.35408 -1.29400 -1.35702 -1.48958 KI 
0.32824 2.19150 1.82613 2.25226 3.02556 KD 
0.01426 0.01975 0.00595 0.02335 0.00698 B 

0.0092 0.0103 0.0117 0.0130 0.0094 J 
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(c) 
: (ISE ) : (ITAE) : (ITSE)

: (ISTAE ) : (ISTSE)  
Fig. 5. Time responses for Case 2: (a) Δfh1,(b) Δfh2, (c) ΔPtie . 

(fixed B=D+1/R) 
controllers’ gains values proposed here, provide (even for 
the same performance index –ISE) better response. 

The dynamic performances for Δfh1, Δfh2 and ΔPtie 
corresponding to Table 1 are displayed in Fig. 4, .while 
the dynamic performances corresponding to Table 2 are 
displayed in Fig. 5. 
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The responses obtained when the parameters are set 
according to the ITSE (in Case 1) indicate that the 
damping of oscillation is much improved and the transient 
error in both the frequency and the tie-line power is also 
much reduced. The same is observed for Case 2 when the 
parameters are set according to the ISE. 

If the bias constant B is not fixed at a prescribed value, 
then the same technique could be used to obtain the 
optimal value of the parameters KP

i, KI
i, KD

i and Bi, 
previously unavailable in the literature, for all 
performance indices. Tables 4 and 5 sum up these values 
for all the performance indices considered. Note that the 
value of all the performance indices considered has 
appreciably increased, compared to the case where the 
bias constant was held constant at the industry-chosen 
value. The optimum values of the bias constant, for all 
performance indices considered, suggest a bias setting 
which is less than the natural area characteristic. 

(c) 
: (ISE ) : (ITAE) : (ITSE)

: (ISTAE ) : (ISTSE)  
Fig. 6. Time responses for Case 1: (a) Δfh1,(b) Δfh2, (c) ΔPtie . 

(B=not fixed) 
The dynamic performances for Δfh1, Δfh2 and ΔPtie 
corresponding to Table 4 are displayed in Fig. 6. while the 
dynamic performances corresponding to Table 5 are 
displayed in Fig. 7. The superiority of the responses 
obtained when the control parameters are set based on 
minimizing the ISTSE is clearly demonstrated for Case 1,  
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(c) 

: (ISE ) : (ITAE) : (ITSE)
: (ISTAE ) : (ISTSE)  

Fig. 7. Time responses for Case 2: (a) Δfh1,(b) Δfh2, (c) ΔPtie . 
(B=not fixed) 

 
while for Case 2 the minimization of the ITSE (once 
again) gives better results. 
 
5.  Conclusion 
In this paper, a new method of tuning the parameters of 
conventional automatic generation control systems of the 
proportional plus integral plus derivative type is 
described. A two-area hydro system is assumed to 
demonstrate the method. Several performance indices are 
considered. These include in addition to the popular 
integral square of the error (ISE), the integral of time-
multiplied absolute value of the error (ITAE), the integral 
of time-multiplied square of the error (ITSE), the integral 
of squared time-multiplied absolute value of the error 
(ISTAE), and the integral of squared time-multiplied 
square of the error (ISTSE). For each performance index, 
a digital simulation of the system is carried out and 
optimization of the parameters of the AGC systems is 
achieved in a simple and elegant manner through the 
effective application of genetic algorithms. It is clear that 
the dynamic performance of the system, using the optimal 
parameters, is resulting from the minimization of a 
different performance index (and not only the ISE 
currently used in literature). In this way, the lack of poor 

damping and settling time (relative to the other indices), 
as well as the improvement of the transient error in both 
the frequency and tie-line power, can be assured. Also, 
the results obtained indicate the superiority of the PID 
strategy over the integral or the proportional-plus-integral 
ones (not shown here). Further work will examine, how 
the optimal parameters of the load frequency controllers 
are influenced due to the variations of the water starting 
time constant (Tw), the inertia constant (H), as well as, the 
behaviour of such a kind of power system when it 
operates under a deregulated electricity market 
environment. 
 
Appendix 
Data for Hydro Power System 
fo=50Hz, Prh1=Prh2=2000MW, Ph

(max)=200MW, 
Tgh1=Tgh2=5s, Th1=Th2=48.7s, Th3=Th4=5s, Tw1=Tw2=1s, 
Kgh1=Kgh2=1, Mh1=Mh2=Tph1/Kph1=2Hh1/fo=0.167puMW-s2, 
Dh1=Dh2=1/Kph1=0.00833puMW/Hz, δ1-δ2=30ο, 
Rh1=Rh2=2.4Hz/puMW, Bh1=Bh2=0.425puMW/Hz, 
ΔPdh1=ΔPdh2=0.01puMW, 2πΤ12=0.545puMW. 
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