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ABSTRACT 
This paper presents an efficient digital methodology for 
estimating synchronizing and damping torque coefficients 
of a synchronous machine.  These coefficients are used as 
a measurement of power system stability. The proposed 
algorithm is based on Pattern search (PS). technique that 
uses digital samples of the machine time responses to 
perform the estimation process.   The problem is 
formulated as a dynamic estimation problem. The goal is 
to minimize the error square of the estimated coefficients.  
The method is tested using simulated case study.  Results 
are reported and compared with those obtained using 
genetic algorithms (GA) and particle swarm optimization 
estimation technique.  The comparison shows that the 
proposed method can successfully estimate the required 
coefficients even in very critical stable cases where other 
methods may fail.  It is also shown that the presence of 
bad data has no effect on the estimated results. The 
method can be considered as a very reliable and accurate 
tool for estimating the damping and synchronizing torque 
coefficient for power system stability assessment. 
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1.  Introduction 
 
This dynamic stability study is concerned with the 
performance of power system under small perturbations.  
It is very essential in power system planning, operation 
and control to study the behavior of power system when 
subjected to these disturbances. The main objective of 
these kinds of studies is to analyze the Electro-mechanical 
oscillations resulting from poorly damped rotor 
oscillations to evaluate the dynamic system stability. Due 
to the dynamic nature of power system, the operating 
conditions of the system change with time. Therefore, it is 
necessary to track the system stability on-line. This is 
done by estimating certain stability indices on basis of the 
given data and updates these indices as new data are 

received.  Synchronizing and damping torque coefficients 
(Ks and Kd) are used as stability measurement indices. In 
terms of these coefficients, both of them must be positive 
for stable operation of the machine[1, 2].  
 
    Several methods have been proposed to estimate the 
synchronizing and damping torque coefficients. Some of 
these methods are based on linearizing the system 
equations and solving them in the frequency domain [3, 
4].  Reference [3] decomposes the change in 
electromagnetic torque into two orthogonal components 
in the frequency domain. The two equations are expressed 
in terms of the load angle deviation then solved directly.   
Static and dynamic time domain estimation methods were 
also proposed. Least square error technique is one of the 
most popular static estimation techniques used for optimal 
parameter estimation [5].  Some limitations and 
disadvantages are associated with application of static 
estimation techniques. For example, when dealing with 
non-stationary waveforms, as in our case, estimates 
should be up-dated always.  Kalman filtering algorithm is 
an example of dynamic state estimation techniques used 
to overcome some of static method disadvantages. The 
filter can be used to perform the estimation process on-
line [6].  Reference [7] introduced a fast and efficient 
stochastic dynamic algorithm for on-line estimation of 
synchronizing and damping torque coefficients. The 
algorithm is based on using a discrete time-dynamic filter. 
Reference [8] presented a comparison between least 
square, Kalman filter and genetic algorithms techniques 
as used for performance evaluation of power system 
dynamic stability.    
 
    Recently, a global unconstrained optimization method, 
developed by the researches in the optimization 
community, had received a tremendous attention.  The 
method is called Pattern search. In reference [9], the 
author introduced an abstract definition of pattern search 
methods for solving nonlinear unconstrained optimization 
problem. The author exploits her characterization of 
pattern search methods to establish a global convergence 
theory that does not enforce a notion of sufficient 
decrease. Moreover, the authors of  [10] presented a 
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convergence theory for pattern search methods for solving 
bound constrained nonlinear program. The authors proved 
global convergence despite the fact that pattern search 
methods do not have explicit information concerning the 
gradient and its projection onto the feasible region. 
Finally, a historic discussion of direct search methods for 
unconstrained optimization is presented in reference [11]. 
The authors gave a modern prospective on the classical 
family of derivative-free algorithms, focusing on the 
development of direct search methods during their golden 
age from 1960 to 1971. 

 
In a compact matrix form, equation (2) can be rewritten in 
discrete state space form at any time step k as: 
 
 ( ) ( ) ( ) ( )Z k H k X k e k= +  (3) 
where  

( )kZ
         is nx1 measurement vector ∆Te 

    This paper proposes a robust and efficient digital 
technique for estimation of synchronizing and damping 
torque coefficients.  The method is used to estimate 
synchronizing and damping torque coefficients (Ks and 
Kd) from the machine time responses of the change in 
rotor angle ( )tδ∆ , the change in rotor speed ( )tω∆

( )eT t
 and 

the change in electromagnetic torque . The 
problem is formulated as a dynamic estimation problem. 
The goal is to minimize the error square in the estimated 
coefficients. The proposed PS technique is used to find 
the optimum solution of the formulated problem.  To 
investigate the potentials of the proposed method, many 
simulated test cases of the adopted system are considered.  
Eigenvalues analysis has been carried out to assess the 
effectiveness of the proposed method.  In addition, the 
performance of POS is compared with other estimation 
methods such as (GA) and particle swarm optimization. 

∆

( )kH           is nx2 connection  matrix 
( )X k          is 2x1 state vector to be estimated (Ks , Kd ) 

( )e k    is nx1 measurement error vector to be 
minimized. 

 
It is clear that the described system of equations (3) is a 
highly over-determine system.  The main objective now is 
to find the best estimate of the vector ( )X k

)

.  The 
problem is an unconstrained optimization one.  The PS 
approach presented in this work is employed to find the 
optimum values of the state vector (X k  that minimize 

the error square vectore k , using the following 
objective function: 
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= ∑2.  Proposed Problem Formulation 
  
In this study a single machine connected to infinite bus 
system is considered [12].  The system comprises a 
steam-generator connected via a tie line to a large system 
represented as infinite bus.  System data is given in the 
appendix.  The synchronous generator is represented    by 
Park’s equations with the third order linear model. The 
dynamic stability study is performed by linearizing the 
power system under consideration around an operating 
point to represent the system in state space model.  The 
machine differential equations, the exciter equation and 
the block diagram can be found in reference [12]. 

Where  is the particles individual error for every 
generation. 

ie

 
 
3.  Pattern Search Optimization 
 

 
The Electro-magnetic torque variations may be broken 
down into two components: the synchronizing torque 
component is in phase and proportional with ( )tδ∆ , and 
the damping torque is in phase and proportional with 

( )tω∆ . Then we can write mathematical form: 
 
  ( ) ( )  ( )s dTe t t K t Kδ ω= ∆ + ∆  (1) 

The Pattern Search (PS) optimization routine is an 
evolutionary technique that is suitable to solve a variety 
of optimization problems that lie outside the scope of the 
standard optimization methods.  Generally, PS has the 
advantage of being very simple in concept, and easy to 
implement and computationally efficient algorithm.  
Unlike other heuristic algorithms, such as GA [13, 14], PS 
possesses a flexible and well-balanced operator to 
enhance and adapt the global and fine tune local search.  
A historic discussion of direct search methods for 
unconstrained optimization is presented in reference [11]. 
The authors gave a modern prospective on the classical 
family of derivative-free algorithms, focusing on the 
development of direct search methods.  
 Using A/D converter and choosing an adequate sampling 

frequency, , ( )eT t∆ ( )tδ∆  and  ( )tω∆  are sampled and a 
set of n equations in the form of equation 1 is obtained.  
In matrix form equation (1) will be 

The Pattern Search (PS), algorithm proceeds by 
computing a sequence of points that may or may not 
approaches to the optimal point.  The algorithm starts by 
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establishing a set of points called mesh, around the given 
point.  This current point could be the initial starting point 
supplied by the user or it could be computed from the 
previous step of the algorithm. The mesh is formed by 
adding the current point to a scalar multiple of a set of 
vectors called a pattern. If a point in the mesh is found to 
improve the objective function at the current point, the 
new point becomes the current point at the next iteration.   
This maybe better explained by the following: 
 
First: The Pattern search begins at the initial point 0X  
that is given as a starting point by the user.  At the first 
iteration, with a scalar =1 called mesh size, the pattern 
vectors are constructed as [ ]0 1 , [ ]1 0 , [ ]1 0−  and 

[ ]0 1− , they may be called direction vectors.  Then the 
Pattern search algorithm adds the direction vectors to the 
initial point 0X  to compute the following mesh points:  
 
 [ ]0 1 0X +  

 [ ]0 0 1X +  

 [ ]0 1 0X + −  

 [ ]0 0 1X + −  
 
Figure 1 illustrates the formation of the mesh and pattern 
vectors.  The algorithm computes the objective function at 
the mesh points in the order shown. 
 

+X0+[-1 0]

X0+[0 -1]

X0+[0 1]

X0+[1 0]X0

 
Fig. 1: PS Mesh points and the Pattern. 

 
The algorithm polls the mesh points by computing their 
objective function values until it finds one whose value is 
smaller than the objective function value of 0X . If there 
is such point, then the poll is successful and the algorithm 
sets this point equal to 1X . 
 
After a successful poll, the algorithm steps to iteration 2 
and multiplies the current mesh size by 2, (this is called 
the expansion factor and has a default value of 2). The 
mesh at iteration 2 contains the following points: 2*[1 0] 
+ 1X , 2*[0 1] + 1X , 2*[-1 0] + 1X and 2*[0 -1] + 1X . 
The algorithm polls the mesh points until it finds one 
whose value is smaller the objective function value of x1. 
The first such point it finds is called 2X , and the poll is 

successful. Because the poll is successful, the algorithm 
multiplies the current mesh size by 2 to get a mesh size of 
4 at the third iteration because the expansion factor =2. 

 
Second: Now if iteration 3, (mesh size= 4), ends up being 
unsuccessful poll, i.e. none of the mesh points has a 
smaller objective function value than the value at 2X , so 
the poll is called an unsuccessful poll. In this case, the 
algorithm does not change the current point at the next 
iteration. That is, 3X = 2X . At the next iteration, the 
algorithm multiplies the current mesh size by 0.5, a 
contraction factor, so that the mesh size at the next 
iteration is smaller. The algorithm then polls with a 
smaller mesh size. 
 
The Pattern search algorithm will repeat the illustrated 
steps until it finds the optimal solution for the 
minimization of the objective function. The algorithm 
stops when any of the following conditions occurs: 
 

• The mesh size is less than mesh tolerance. 
• The number of iterations performed by the 

algorithm reaches the value of max iteration. 
• The total number of objective function evaluations 

performed by the algorithm reaches the value of 
Max function evaluations. 

• The distance between the point found at one 
successful poll and the point found at the next 
successful poll is less than X tolerance. 

• The change in the objective function from one 
successful poll to the next successful poll is less 
than function tolerance. 

 
All the stopping criteria of the Pattern search algorithm 
can be pre-defined subject to the problem at hand. 
 
 
4.  Results and Analysis 

 
 MATLAB® package is used to simulate the study 
system.  The block diagram in [12], shown in the 
appendix, is built and the required , ( )eT t∆ ( )tδ∆  and  

( )tω∆ samples are generate in Simulink. Different study 
cases, stable and unstable, are simulated under different 
kind of disturbances. Data window size is varied between 
5 to 30 seconds. Number of samples also varied between 
150 to 400 samples within the considered window.  

(eT t )∆ , ( )tδ∆  and  ( )tω∆ for case 1 are shown in fig. 2. 
 
A set of MATLAB® files implementing PS algorithm are 
built in order to solve the estimation problem. The search 
is started after coding the objective functions for all 4 
cases. Then we Loaded the generated samples, ( )eT t∆ , 

( )tδ∆  and  ( )tω∆ , from Simulink into MATLAB® 
function. The "psearchtool" function in the Direct Search 
Toolbox in MATLAB® was implemented to solve the 
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minimization of the objective function problem in hand.  
Fig. 3 shows the processing of the function "psearchtool" 
to generate the best value of the objective function and the 
mesh size in each iteration. It can be shown that after only 
five iterations the algorithm is directed to the optimal 
solution. Moreover, (PS) algorithm needed only 12 
iterations to lock on the mesh size towards reaching the 
optimal minimum of the objective function.  And the 
mesh size did not exceed 2, which means that the PS 
algorithm senses the direction of the optimal solution after 
only 2 iterations. 
 
 

 
Fig. 2: , ( )eT t∆ ( )tδ∆  and  ( )tω∆  with disturbance at 

10 seconds. 
 
 

 
Fig. 3: Iterations of PS vs. Best objective function 

value and Mesh Size. 
 
 
Table 1 shows results obtained for four different study 
cases. Different gains are used to simulate these cases 
[12]. In this table the estimated coefficients obtained 
using the proposed method, GA and the particle swarm 

optimization method (PSO), from references [15, 16], are 
shown below for comparison with PS.  It is found that 400 
samples, (within a data window size of 20 seconds after 
the disturbance), are sufficient to represent the behavior 
and to obtain the solution. Results obtained indicate that 
systems 1 and 3 are stable systems since both Ks and Kd 
are positive.  As noted earlier that both Ks and Kd have to 
be positive as a condition for stability. The negative 
values of Ks and Kd obtained for systems 2, 4 and 5 
indicate that these systems are unstable. 
 

Table 1 
Comparison of Estimated Parameters 

PatternSearchPart ic le SwarmG enetic algorithm

d
K

s
K

d
K

s
K

d
K

s
K

C ase #

0.003910.28420.005010.31210.001610.26631

-0.0234-0.0508-0.0298-0.0462-0.0235-0.05612

0.00100.32910.00240.30440.00220.32543

-0.0215-0.0430-0.0219-0.0428-0.0221-0.04554  
 
 
To assess all the findings with regards to the issue of 
stability, the block diagram representing the dynamics of 
the system at hand (fourth degree) is linearized. Then the 
state space model, i.e. matrices A, B, C and D, of the 
model are obtained.  The electromechanical-mode 
eigenvalues of the system for all cases are worked out in 
the table 2.  In all cases, the three methods give accurate 
and close results. So PS introduces accuracy in all cases, 
and it is proved to be reliable in stable or unstable cases. 
 

Table 2 
Simulated Cases and its Corresponding Eigenvalues 

 
 
 
Figure 4 illustrates the nature of PS in the number of 
computation of the value of the objective function to 
obtain the optimal solution of case 1.  The upper figure 
shows the number of calculations for the mesh point in 
every iteration. And since we set the complete poll option 
to "off" in the Poll option pane, the algorithm will stop 
computing the values of the objective functions for the 
rest of the mesh points at the first objective function value 
of the mesh points, which is less than the objective 
function value of the current point. This will lead PS to 
compute less number of function count (123 counts), 
approximately 10% less of the total function count.  In the 
lower graph, we set the algorithm to conduct a complete 
poll, which means computing the objective function value 
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for all of the mesh points. This will assure the algorithm 
to find the global minimum, and the total count became 
137.  However, PS produced the same optimal solution in 
both cases. 

 

 

 

Fig. 5: PS assumptions for the unknown variables for 
every objective function calculation count. 

 
 
5.  Conclusion 
 
This paper presents the application of Pattern search 
techniques for optimal estimation of the synchronizing 
and damping torque coefficients of a synchronous 
machine.  The problem is formulated as an estimation 
problem.  PS technique is used to find the optimum 
parameters based on minimization of the sum of the errors 
square in the process. The method is tested using different 
simulated cases.  The performance of PS is compared 
with that of the GA and Particle Swarm Optimization.  
The method can be considered as a very reliable and 
efficient tool in the area of power system stability 
analysis. 

Fig. 4: PS function counts per interval in non complete 
poll and complete poll. 

 
In addition to the accuracy the proposed algorithm offers 
another advantage when dealing with data contaminated 
with bad measurements (bad data).  It is important to 
mention that all the estimated coefficients in table 1 are 
acquired from accurate error-free data sets.  To simulate 
bad measurement at different time, zeros were introduced 
deliberately in the data obtained for , ( )eT t∆ ( )tδ∆  and  

( )tω∆ .  The amount of bad data introduced is about 10 
%. Cases 1 and 3 are used for comparison.  The estimates 
for Ks and Kd using PS were never affected.  The out 
come is almost identical for the results obtained in table 1 
for both case 1 & 3.  Mean while, it is obvious PS 
converged to almost identical coefficient for both case 1 
and 3 to the ones in table and ultimately leads to proper 
decision concerning the stability of each case.  
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 Figure 5 shows the values of the estimated variables Ks 

and Kd for each objective function count. It clear that the 
algorithm calculates a wide range of the unknown 
variables to assure that the solution that it returns is the 
optimal solution. 
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