
A WORD PREDICTOR FOR INFLECTED LANGUAGES: SYSTEM DESIGN
AND USER-CENTRIC INTERFACE

Carlo Aliprandi
Synthema Srl

Pisa, Italy
email: aliprandi@synthema.it

Nicola Carmignani, Paolo Mancarella and Michele Rubino
Department of Computer Science

University of Pisa, Italy
email: {nicola, paolo, rubino}@di.unipi.it

ABSTRACT
We present FastType, a word prediction system for the Ital-
ian inflected language, and its user-centric interface. Fast-
Type has greatly evolved from its original features. We
have added new linguistic resources, implemented more ef-
fecient prediction algorithms and made a brand-new user
interface. Thanks to the prediction engine upgrades, like
the generation of word and Part-of-Speech n-gram collec-
tions, and to the introduction of a linear combination al-
gorithm, performances are greatly improved. Keystroke
Saving reached 48% and is now comparable to the one
achieved with state-of-the-art methods for non-inflected
languages. DonKey, the new human-computer interface,
allows the user to benefit from automatic word completion
in any application. FastType is primarily designed for users
with special needs and to reduce misspellings for users with
linguistic difficulties.

KEY WORDS
Interaction Design for People with Disabilities, Speech and
Natural Language Interfaces, User Interface Development,
Word Prediction, Alternative and Augmentative Communi-
cation.

1. Introduction

The FastType word prediction system for the Italian (in-
flected) language has been introduced in [1]. At each
keystroke, FastType suggests a list of meaningful predic-
tions, amongst which the user can identify the word he
meant to type. By selecting a word from the list, the sys-
tem will automatically complete the word being written,
thus saving keystrokes and helping people with motor im-
pairments as an Alternative and Augmentative Communi-
cation (AAC) [2] device. In order to improve the original,
naive, interface of FastType, we conducted a survey among
impaired students from USID (Unit for Support and Inte-
gration services for Disabled students of the University of
Pisa) to identify their needs, their wishes for an assistive
writing environment and their will to use a word prediction
software to speed up text editing.

The remainder of this paper is organized as follows.
Section 2 gives a brief overview of the state-of-the-art in
word prediction. The improvements of FastType in terms
of language resources and algorithms are presented in Sec-

tion 3. These improvements have led to performance boost-
ing of FastType as shown in Section 4. Section 5 discusses
the results of the mentioned survey. DonKey, the new user-
centric interface, is described in Section 6. Finally, Sec-
tion 7 draws some conclusions and describes future work.

2. State of the Art

The main goal of word prediction is guessing and complet-
ing what word a user is willing to type in order to facilitate
and speed up the text production process. Word predictors
are intended to support writing and are commonly used in
combination with assistive devices such as keyboards, vir-
tual keyboards, touchpads and pointing devices. Predic-
tion methods have become quite popular in mobile phone
softwares. Commercial systems as Tegic Communications
T9, Zi Corporation eZiText and Motorola Lexicus iTap are
all successful systems that adopt a very simple method of
prediction based on dictionary disambiguation. They are
commonly referred to as letter predictors.

Word predictors typically use more refined stochastic
language models with context information in order to pre-
dict a full word instead of a single letter.

Word prediction for non-inflected languages achieved
good results. For instance [3] and [4] present language pro-
cessing techniques that allow the user to save more than
50% of keystrokes thanks to prediction software. The main
contribution of FastType is the adaptation and improve-
ment of these techniques for inflected languages. Indeed
the latter pose a harder challenge to prediction algorithms
than non-inflected languages, due to the high number of
inflected forms that dramatically decrease Keystroke Sav-
ing (KS). Being Russian and Basque two languages rich
in inflectional word forms, [5] and [6] use a morphologi-
cal component in a two step procedure to compose inflec-
tions from the root forms of words. FastType follows in-
stead a one-step procedure, presenting to the user a list of
word forms. These forms are correctly inflected by analyz-
ing the sentence context, made up by Part-of-Speech (POS)
and related morpho-syntactic information about the previ-
ous words. This procedure, combined with on-the-fly POS
tagging, enables FastType to perform a KS comparable to
the one achieved for non-inflected languages.

569-019 148

nicholas

3. Upgrading the Prediction Engine: New
Language Resources and Algorithms

The architecture of FastType can be described as follows:

Figure 1. FastType Architecture

As shown in Figure 1, FastType has three main com-
ponents: the User Interface, the Predictive Module and the
Linguistic Resources. The Prediction Engine is the kernel
of the Predictive Module; it manages the communication to
and from the User Interface, keeping trace of the prediction
status and of typed words. At each keystroke it predicts
suggestions, in the form of list of word completions and of
list of next-letters, by assuring accordance (gender, num-
ber, person, tense and mood) with the syntactic sentence
context. The Predictive Module functionalities, such as the
morpho-syntactic agreement and the lexicon coverage, are
provided by the statistic language model based on POS tag
n-grams and on morphological information provided by the
Linguistic Resources.

3.1 New Language Resources

A basic assumption in word prediction is that contextual in-
formation affects the environment where the word has to be
entered. In order to predict the most likely word it is neces-
sary to have a high-order representation of the context. This
assumption has been consolidated into stochastic methods
that are based on Markov models and n-gram word models.
The task of word prediction can be modeled as the estima-
tion of probability to guess the N

th word (wN) given the
current sequence of N-1 previous words, denoted by

P(wN | w1, w2, . . . , wN−1)

Usually, as the vocabulary size is very large, it is nec-
essary to approximate n-gram models by unigrams (n = 1),
bigrams (n = 2) and trigrams (n = 3):

P(wi | w1, . . . , wi−1) ≈ P(wi | wi−n+1, . . . , wi−1)

N-grams of POS are used as a function ℘ to restrict
the increase of the context parameters into an equivalence
class, so that

P(wi | w1, . . . , wi−1) ≈ P(wi | ℘[wi−n+1, . . . , wi−1])

We improved the original POS trigram model by
means of a trigram unification algorithm. In the
original model every word is tagged with a POS tag
containing deep morpho-syntactic information. As an
example, the Italian sentence “io ti amo” (“I love
you”) is tagged as io[NPN1S1(io)] ti[NPN2S2(tu)]
amo[VTN1IN(amare)], that is:

• NPN1S1, a first-person personal pronoun;

• NPN2S2, a second-person personal pronoun;

• VTN1IN, a present indicative first-person verb.

The first kind of unification is generalization and
can be shown in the following example. During
its training, FastType learns POS trigram sets which
are very specific, e.g. “voglio scrivere lettere” (“I
want to write letters”) is modeled into the POS tri-
gram “VNN1IN VTNIFN SCFPFS ”, while “voglio scri-
vere libri” (“I want to write books”) is modeled into
“VNN1IN VTNIFN SCMPMS”. The above two trigrams
differ only in the last unigram for the gender tag
(F vs M). Since in this case the gender info is not
relevant for syntactic correctness, the generalization
merges the two trigrams into a single `new' trigram
“VNN1IN VTNIFN SC0P0S ”. In the last unigram the 0
is considered as a wildcard telling the engine to ignore gen-
der information when selecting suggestions.

A second kind of unification is parameterization.
During training, FastType learns POS trigrams where gen-
der or number information are always in accordance. For
example “il mio gatto” and “la mia gatta” (in Italian
“gatto” is a male cat and “gatta” is a female cat) gener-
ate the POS trigrams “RDMSMSGEMSMSSCMSMS” and
“RDFSMS GEFSMS SCFSMS”. Since there is a gender
agreement, the unification algorithm can merge the tri-
grams into a single one, “RD*

SMS GE*

SMS SC*

SMS”.
As opposed to the 0 wildcard, here *

stands for a logical
variable, that is reference-resolved at run time: if the user
writes “la mia”, the two words are classified as feminine
singular and the * for gender is resolved as F, and thus only
feminine singular nouns (like “gatta” and not “gatto”) will
be suggested.

Unification brought FastType two considerable im-
provements, a more generic word search and an additional
8% of KS. Moreover, the lower number of POS trigrams
(the original set of 76.000 trigrams dropped to 19.000)
greatly increased the speed in searching suggestions.

To further improve the prediction engine, two new
language resources were created: POS bigrams and Tagged
Word (TW) bigrams. POS bigrams and TW bigrams
were trained from a large balanced corpus (approximately
2.000.000 word forms) created from newspapers, maga-
zines, documents, commercial letters and e-mails. The
corpus was cleaned, standardized (punctuations, capitaliza-
tions) and then parsed using a rule-based parser, the Italian
POS tagger Synthema Lexical Parser (SLP) [7]. The re-

149

sult was a corpus tagged with syntactic and morphological
knowledge that was used for training.

POS bigrams can capture context information for
pairs of words. They are particularly useful for word pre-
diction at the beginning of sentence and in short sentences.

POS bigrams are also used as a backup model for
POS trigrams: the engine, rather than accepting a POS tri-
gram with a probability under a given threshold, extends
the search to POS bigrams, in order to get a more signifi-
cant POS. A higher probability produces better suggestion
ranking (see Section 3.2).

Finally, we introduced a new language resource, TW
bigrams: the typical Bigram model estimates the probabil-
ity of a word given the preceding one:

P(wi | wi−1)

We extended this model by adding POS infor-
mation. A word bigram (wi−1, wi) is extended to
(wi−1, wi, ti), where ti is the POS of wi. The probabil-
ity of (wi−1, wi, ti−1) is estimated by

P(wi | wi−1, ti)

In the next section we show how this new resource
is fundamental for the Linear Combination ranking algo-
rithm.

3.2 New Prediction Algorithm

We introduce a new prediction algorithm based on Linear
Combination extending the baseline algorithm presented in
[1]. The approach closest to ours is the one presented in
[3], that is a Linear Combination algorithm combining POS
trigrams and simple word bigrams.

Our Linear Combination extends this model to cope
with inflected languages, by combining the POS trigram
model with the two new language models previously de-
scribed in this section. The POS trigram model finds the
most likely POS tags for the current word, given the two
previous POS tags, if necessary backed up by POS bigrams.
The TW bigram model finds the most likely words given
the immediately preceding word. The probability S for the
current word is the result of a weighed combination of the
models:

S = x · P(wi | wi−1, ti) + y · f(ti, ti−2, ti−1)

where

f(t, t′, t′′) =

{
P(t | t′, t′′) if P(t | t′, t′′) > ϑ

P(t | t′′) otherwise

and ϑ is the threshold. x and y are the coeffecients of the
linear combination and their sum must be 1 (x + y = 1).

To measure FastType performance improvements
with the new Linear Combination algorithm we ran trials
on the same test set presented in [1], which is composed

of 40 texts randomly selected from Web news and journal
papers. Notice that the test set is completely disjoint from
the training set.

We developed a new test bench, performing different
trials to experimentally determine the optimal value for x
and y. The nutshell of the test bench is a `simulated user'
typing the test set and acting as a user that always selects
the correct suggestion when predicted. We then measured
the KS varying values for x and y. We ran trials increasing
x by 0, 1 from 0, 1 to 0, 9. The best KS was obtained for
x = 0, 6.

The new Linear Combination algorithm, raised con-
siderably KS. Our optimal test bench produced an average
KS of 45% with a prediction list of 10 words. The KS for
the baseline algorithm, presented in [1] was 30%. We be-
lieve this is an outstanding result for an inflected language
as we detail in Section 4.

4. FastType Performance Measurements

FastType has been tested to appraise its utility. We have
choosen to evaluate the system with the respect to the fol-
lowing three performance measures. The first two are com-
monly found in literature while the third one has been intro-
duced to compare the time saving with the “typing effort”
saving expressed by KS.

1. Keystroke Saving (KS): the percentage of keystrokes
the user “saved” by using FastType. Being Ct the
number of keystrokes needed to write a text without
FastType and Cd the number of keystrokes needed to
write the same text with FastType

KS =
(Ct − Cd)

Ct
× 100.

2. Keystrokes until Completion (KUC): being c1 . . . cn

the number of keystrokes for each of the n words be-
fore the desired suggestion appears in the prediction
list

KUC =
(c1 + c2 + . . . + cn)

n
.

3. Word Type Saving (WTS): the percentage of time the
user saves with FastType. Being Tn the time needed to
write a text without FastType and Ta the time needed
to write the same text with FastType

WTS =
(Tn − Ta)

Tn
× 100.

We developed a simulated writer that typed the test set
discussed in Section 3. The presence of a simulated user is
needed to guarantee constant typing speed, which is funda-
mental to calculate WTS percentages. A real life test with
human writers is planned for future work, as shown in Sec-
tion 7. A parameter that can greatly influence performance
measurements is the length L of the prediction list, so we

150

L KS KUC WTS
5 41,15% 2,85% 21,12%

10 45,26% 2,67% 24%
20 47,9% 2,48% 24,35%

Table 1. Performance Measurement Results

ran three trials on the test set with L = 5, L = 10 and
L = 20. Results are shown in the Table 1.

As we can see in Table 1, the increase in KS, WTS and
KUC between L = 5 and L = 10 is way more relevant than
the increase between L = 10 and L = 20. This result was
relevant to design the graphical user interface we discuss
in Section 6. Performances are significantly better than ex-
isting works on inflected languages, that achieve a KS of
30%. With L = 10, KS for the improved FastType rises to
45%. A graphical example of keystroke saving with L = 10
is shown in Figure 2 where saved characters are marked in
gray.

Figure 2. Sample text written with the help of FastType

5. Survey Results

A survey among impaired students from USID was con-
ducted to guide the design of the new human-computer in-
terface. The results outlined that:

• Most users, as their primary computer activity, write
text for study and work (two very time-consuming ac-
tivities which occupy the largest part of the day).

• Most users communicate intensively through the In-
ternet by means of written text (mainly e-mail). This,
in conjunction with the previous item, is evidence of
the importance of writing text in their everyday life.

• Despite their handicap, almost all users prefer the
standard hardware keyboard to write text and work
with the computer. Even eyesight-impaired users,
who like the Braille bar to get feedback from the com-
puter, choose the standard keyboard to write. Some
users prefer a virtual keyboard or another assistive in-
put software that allows text input via the mouse. Au-
tomatic Speech Recognition is uncommon but known
to some users. A word prediction interface should

allow choosing suggestions via both mouse and key-
board and should also include speech recognition to
choose the desired suggestion.

• Microsoft Officer is most commonly used for text
editing, so compatibility with it is needed for a word
prediction interface.

• Most users would appreciate an assistive writing soft-
ware.

• Text-to-Speech and audio feedback would be greatly
appreciated in a word prediction interface.

• The users state that, regardless of the underlying
technology for word prediction, the system interface
should be kept as simple as possible.

• The typing speed of most users is up to 100 charac-
ters per minute (though some of them can reach 200
characters per minute). This giving us a time upper
bound of about 0,5 seconds to fill the prediction list. A
slower prediction engine would in the end slow down
the user's writing, which is not desirable.

• About half of the users need a specific dictionary for
their work (or study); in such contexts a prediction
software must be designed to support domain-oriented
dictionaries.

6. A New Interface: DonKey

The analysis of the survey we conducted was used to de-
sign and develop a new user interface (called DonKey) that
nicely complements the prediction engine. Since nearly all
users use keyboard and mouse to input text into MS Office
programs, we built an interface that smoothly integrates
into MS Windows where users can choose suggestions for
automatic completion with mouse and keyboard. Further-
more, we made sure it would be easy to understand and
use.

The user interface we created is shown in Figure 3.
Donkey is predicting words for the current uncompleted
word (“m...”) after a feminine singular article (“la”) and a
feminine singular adjective (“mia”). Notice that only fem-
inine singular nouns are predicted (“madre”, “mamma”,
“moglie”, etc.) whereas masculine or plural nouns are
dropping out the prediction list. This morpho-syntactic
accordance is of the utmost importance for inflected lan-
guages. Plus, by implementing a ”sieve” function on
nouns, it greatly simplifies the suggestion ranking to ensure
that the most likely words will appear in the list.

DonKey works in conjunction with every MS Win-
dows application, interacting with peripherals and external
devices. While the user writes text into e.g. MS Word,
DonKey catches the keystrokes and feeds them to the pre-
diction engine to build up its internal status and sentence
context. The engine returns suggestions for word comple-
tion to the interface and the user can select them either by

151

Figure 3. The DonKey Interface

pressing the corresponding function key or by clicking on
the corresponding button. Figure 3 shows a screenshot of
DonKey where six words are suggested to the user. How-
ever he can customize the number of suggestions by choos-
ing the desired value in the range of 1-10 (selectable with
F1 to F10 function keys). When the user hits a function
key (or clicks on the corresponding button on the inter-
face), DonKey sends back the corresponding suggestion,
thus completing the current word. We are currently work-
ing on including a virtual keyboard with integrated pre-
diction and automatic speech recognition, to fulfil users'
needs.

DonKey also features audio feedbacks to help
eyesight-impaired writers. Sounds warn the user, e.g. when
no suggestions have been found as well as to confirm that
the word selected has been inserted. Another kind of audio
feedback is Text-to-Speech (TTS). DonKey plays natural
speech feedback to the user. The TTS module can be con-
figured to speak aloud given suggestions and the selection
made by the user. Speech feedback is clearly alternative to
audio feedbacks. The user can easily configure DonKey by
activating or deactivating speech feedback, by changing the
voice parameters (like speed) and setting the desired num-
ber of suggestions. More suggestions provide higher KS,
less suggestions provide easier and faster reading. Our test
bench showed that a suggestion list of length 10 (default
value) gives already good performances, while a longer list
would bear an excessive cognitive load on the user.

The configuration program should be as easy to un-
derstand and use as DonKey, so we avoided complex and
cumbersome configurations, like lots of options, a tiny
character set (hard to read) and technical terms and choices
that can be difficult to make for a computer-layman. We
developed a very user-friendly configuration program, with
few, easily understandable options in a single dialog win-
dow. TTS confirms users' settings.

In short, FastType provides a simple interface, which
is particularly easy to use.

7. Conclusion and Future Work

We presented various improvements of the FastType pre-
diction engine, which made it a real prediction software for
inflected languages. Indeed, according to our tests, the sys-
tem performances are comparable to those of predictors for
non-inflected languages. The major improvements have to
do with new linguistic models based on new linguistic re-
sources, and with an extended Linear Combination algo-
rithm.

The system reaches a KS up to 45%, which is com-
parable to the KS achieved by others for non-inflected lan-
guages. Performances are significantly better than existing
works on inflected languages, that achieve a KS of 30%.
The system is also equipped with a versatile, easy to use
and user-centric interface that will be used in the planned
user evaluation. In the next year FastType will be beta-
tested by disabled users from USID to measure their satis-
faction in real usage.

Further work is planned to establish additional im-
provemens in terms of flexibility, accessibility and predic-
tion quality. First of all we intend to investigate the system
adaptability to the user's style in order to enrich FastType
with a personal language model and a personal dictionary.
FastType will feature machine learning of “writing styles”,
and the prediction engine will learn not only the user's lex-
icon but also the sentence context (i.e. the user writing
style).

Combining existing methods with the user language
model and dictionary, we expect to obtain, after a starting
training period, a more effective prediction user by user.
FastType will include ASR to provide the user with a more
simple and free interaction. We will assess real bene�tsof
ASR applied to word prediction. Moreover we are plan-
ning to design and develop a word prediction interface for
portable devices (handheld PC, PDA, smartphones) and, if
necessary, an appropriate “portable device version” of the
prediction engine.

Acknowledgement

The FastType project is partially funded by the Fondazione
Cassa di Risparmio di Pisa.

References

[1] C. Aliprandi, N. Carmignani and P. Mancarella, An
Inflected-Sensitive Letter and Word Prediction System,
Proceedings of the International Conference on Interac-
tive Computer Aided Learning, Villach, Austria, 2006.

[2] A. Copestake, Augmented and Alternative NLP Tech-
niques for Augmentative and Alternative Communica-
tion, Proceedings of the ACL Workshop on Natural
Language Processing for Communication Aids, Madrid,
Spain, 1997, 37–42.

152

[3] A. Fazly and G. Hirst, Testing the Efficacy of Part-
Of-Speech Information in Word Prediction, Proceedings
of the 10th Conference of the European chapter of the
Association for Computational Linguistics, Budapest,
Hungary, 2003.

[4] T. Miller and E. Wolf, Word Completion with Latent
Semantic Analysis, Proceedings of the 18th Interna-
tional Conference on Pattern Recognition (ICPR '06) ,
Hong Kong, China, 2006, 1252–1255.

[5] S. Hunnicutt, L. Nozadze and G. Chikoidze, Russian
Word Prediction with Morphological Support, 5th In-
ternational Symposium on Language, Logic and Com-
putation, Tbilisi, Georgia, 2003, 91–96.

[6] N. Garay-Vitoria and J. Abascal, Word Prediction for
Inflected Languages. Application to Basque Language,
Proceedings of the ACL Workshop on Natural Language
Processing for Communication Aids, Madrid, Spain,
1997, 29–36.

[7] R. Raffaelli, Lexical Data Base Management System –
LDBMS, Synthema Internal Report, Pisa, 2000.

153

