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ABSTRACT 
This article presents a new methodology which monitors, 
on-line, the insulation condition of a transmission line and 
verifies anomalies in the operation before the power 
transmission has been interrupted, providing, this way, a 
predictive maintenance in transmission lines. This 
methodology uses harmonic decomposition of the leakage 
current for analyzing the insulation condition of the line 
and employs an artificial neural network for defect 
location. Experimental measurements were done to 
validate the simulated results.  
 
KEYWORDS 
Artificial Intelligence Applications in Energy and Power 
Sys;Fault Diagnosis;Power Transmission. 

1. Introduction 
Electric energy is one of the most important resources for 
economic development of a country, as well as, 
promoting satisfaction and welfare for society. Therefore 
Electric Power Systems (EPS) should guarantee a high 
level of reliability and maintenance of electric power 
delivery. However, due to the increase complexity of 
EPS, because of the constant necessity of energy and new 
links of the existent systems, interruptions in energy 
systems are more frequent. 

This new and challenging scenery has demanded 
substantial improvement of the equipment for fault 
location, control and protection to guarantee reliability 
and economic operation of EPS in normal conditions or 
contingency. According to [1] the contingency situations 
are mostly of two kinds: fault or failure. Fault is an 
unpredicted deviation of at least one characteristic 
property or parameter of the system from acceptable, 
usual or standard condition, on the other hand, a failure is 
a permanent interruption of a system’s ability to perform 
a required function under specified operation conditions. 

Faults can occur in different parts of a EPS, but usually 
the most susceptible element is the Transmission Line 

(TL), it is caused especially because of its dimensions, 
functional complexity and exposure to the outside 
environment, these characteristics difficult the 
maintenance and monitoring. Faults can be caused by the 
occurrence of different types of phenomena, such as the 
end of lifetime of the equipment, environmental effects 
involving pollution problems, humidity or overheat, 
short-circuit in chain insulators, and also possible 
accidents like mechanical shock in towers or equipment, 
affecting many kinds of customers. 

A precise fault location in transmission lines is very 
important because it can provide a faster maintenance and 
a short time of re-establishment of the system [2], [3]. 

This paper proposes a method for fault location on TL 
using the harmonic decomposition of the leakage current, 
its main tools are the mathematical model and the 
Artificial Neural Network (ANN). Real voltage and 
current data are acquired by analyzers installed in the two 
substations (SS). The methodology presented here is a 
registered international patent by number 
0000220600491835 on April 19, 2006.  

2. Methods for Fault Location of 
Transmission Lines Using Neural 
Networks 

Fault Location on Transmission Lines has been largely 
discussed in the literature for years. Many of these articles 
consider only permanent faults, that unable a predictive 
maintenance.  

Many different methodologies for fault location have 
been proposed by different authors, the two most 
common approaches are based on: i) the computation of 
the impedance by phasorial data of voltage and currents 
measured in one, two or three endings of the line; ii) the 
traveling wave method. 

New concepts such as ANN and Wavelet Transformer 
(WT) had been employed successfully in fault location in 
TL [4]-[9]. 
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The fault location methods that use ANN usually need 
the three phases of voltage and current data. The most 
used ANN in this kind of problem is the multilayer 
perceptron (with feed forward and backpropagation 
techniques for training). The ANN is fed by the data 
generated (simulated) by the Alternative Transients 
Program (ATP) software. 

There are many articles that present not only methods 
for fault location [4], [5], [6], [7], [8] but also methods of 
fault detection and classification [4], [10]. 

Purushothama et al [6] presented two approaches using 
modified ANN to determine the fault location and the 
resistance of the fault. Protection relays were used to 
indicate the faulted line and the type of fault. The first 
approach uses only one terminal data and Eriksson’s et al 
equation [11]. The input data are values of the three 
phases of voltage and current in situations of pre-fault and 
post-fault. Seven ANN were developed. The first one 
determines the type of fault, and the other six were made 
to locate the fault. The second approach uses voltage data 
of two ends of the TL. This approach is independent of 
current data or of resistance of the fault.  

Purushothama et al also presented two distinct 
topologies of ANN, one is the multilayer perceptron, and 
the other one is Fahlaman’s technique [12], i.e. cascade 
correlation technique. 

Góes, Rodrigues and Da Silva [7] showed a new 
approach for fault location in three ends of TL using 
ANN. The ANN developed is to identify the fault leg 
using current data from only one terminal and the voltage 
data from three terminals of the TL. The three terminals 
data here are necessarily synchronized. The ANN used is 
a multilayer perceptron with 16 neurons in the input layer, 
8 neurons in the hidden layer, and 3 in the output layer, 
16-8-3. The simulation data were generated by ATP 
software. This method presented over 86% of correct 
identifications, however, the method is restrict because it 
shows only the fault leg for a phase/ground fault. 

Ramos, Vellasco and Pacheco [8] presented a 
technique of a fault identification and location in TLs 
using ANNs and only one terminal data. In this article, 
five ANNs were developed. One of them was made only 
to classify the fault, the other four ANNs were made to 
locate the fault. The authors compare the results obtained 
with this technique against the well known Takagi 
method [13]. In this comparison the presented technique 
had some advantages, such as the locate precision, and the 
absolute error was less than 2%. 

Most of the articles that use ANN for fault location do 
not use real data, all of them use the ATP software to 
generate the data set.  

This article uses real data for the simulation and for the 
ANN design. 

3. The Transmission Line Chosen 
To develop a fault location methodology it is essential to 
monitor a TL. The monitoring must provide information 
such as voltage and current. These data are the input of 
the model. 

The chosen transmission line was GUAMÁ – 
UTINGA – MIRAMAR that belongs to the Transmission 
System Tucuruí 230 kV (TUC 86 – 3003R – 5), as it is 
shown in Fig. 1. Only the stretch between the SS Guamá 
and SS Utinga belonging to Centrais Elétricas do Norte 
do Brasil – ELETRONORTE (Pará – Brazil) was 
monitored.  

The constructive data of the TL Guamá – Utinga such 
as the tower structures, number of spans, porch and partial 
and total distances were provided by ELETRONORTE. 
There are 50 towers between the SS Guamá and Utinga, 
the average distance is 374.36m and the total distance is 
19,049.68m. Two Power Sentinel 1133A analyzers were 
installed in each one of the substations, as shows Fig. 2. 
These analyzers are synchronized and are capable to 
provide voltage, current and power data up to the fiftieth 
harmonic, with 0,025% of precision. The data were stored 
and manipulated in a file to be used as input in the 
mathematical model. 

Fig. 1. Transmission line Guamá-Utinga-Miramar 
(ELETRONORTE). 

 

(a) (b) 
Fig. 2.  Analyzer Power Sentinel 1133A installed in the substations 

Guamá and Utinga; (a) Front panel; (b) Back panel. 

4. Mathematical Model and Simulation 
4.1 The Chosen Model 

Thinking in a simple mathematical model that could well 
represent the behavior of a real transmission line, the 
authors chooses the П distributed model that is 
satisfactory for short and untransposed TL such as 
Guamá-Utinga. This model considered several sections in 
series, in agreement to [14]. 

The simulation of the mathematical model was done by 
the program Simulink of MATLAB. Equation (1) can be 

r found directly from Kirchoff”s law fo voltage. 

,ݔሺ܄ ሻݐ െ ݔሺ܄ ൅ ,ݔ∆ ሻݐ ൌ Rᇱ∆۷ݔሺݔ, ሻݐ ൅ Lᇱ∆ݔ ப۷ሺ௫,௧ሻ
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 (1) 
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The TL simulation is representative. It can be applied 
at any TL, therefore the simulation was done with only 10 
towers, as it can be seen in Fig. 3. 

The input parameters of simulations are: vectors with 
voltage and current data from the fundamental to 50th 
harmonic obtained from local terminal; capacitance (C = 
0.1634 nF); resistance (R = 1.0955Ω) and inductance (L = 
31.88 mH) of the line, obtained in [15]. The output 

parameters are: computed vectors with voltage and 
current data from the fundamental to 49th harmonic for 
remote terminal and the harmonic decomposition of the 
leakage current. The box Powergui is an internal routine 
of Simulink that provides perceptual harmonic 
decomposition using Fast Fourier Transformer. Fig. 4 
describes a block diagram of Simulink of (1) representing 
one tower of the block diagram of Fig. 3. 

 

Fig. 3.  Block diagram of the mathematical model. 
 

Where ρ is the volume charge density. 
The theory of gaussian surfaces for closed surfaces 

assures that the algebraic sum of the currents that enter 
and go out of a closed surface is equal to zero (Fig. 5). 
Following this, the leakage current for the stretch of the 

ted by (4TL is calcula ): 

௅௘௔௞௔௚௘ܫ ൌ ܫீ ௨௔௠௔ ௌௌ െ  .௎௧௜௡௚௔ ௌௌ Fig. 4.  π model for each towerܫ
(4) 

4.2 Determination of Leakage Current 

The insulation conditions determine the state operation of 
the TL. As the insulation depends on the resistance and 
the dielectric strength of a TL, it was chosen, as variable 
of the model, the leakage current of the TL. The model 
validation was done by comparing the measured leakage 
current and the leakage current obtained by simulation. 
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To determinate the leakage current, it was used the 
Gauss’ Law which enunciates that the flux of the electric 
field through a closed surface is equal to 1 ε଴ൗ  times the 
net charge enclosed by the surface, [16], that was used to 
validate the o el. Equating: 

Fig. 5.  Gaussian closed surface for the stretch of a TL. 

Gauss Law was used because of the complexity of the 
structures, since it is extremely hardworking considering 
all the existent nodes in a transmission line. It might exist 
leakage current in any of the nodes in a TL.  
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 (2) 
5. Validation of the Model 

where: 
E → is the electric field; 
S → the surface; 
qi → the electric charge. 
In its differential form, (2) is also known as 1st 

ell’s Equation. Maxw

.׏ ۳ ൌ
ρ
ε଴

 

Observing Fig. 6 (a) and (b), we can compare the 
measured leakage current (experimental) and the 
simulated leakage current (theoretical), both shown at 
only one phase. It can be seen that the two wave forms are 
similar and that they have almost the same peak value. 
This comparison validates the model. 

(3) 
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8 ൈ 246 matrix. The output values are the fault location 
and capacitance, these two parameters are together in an 
output  matrix. Fig. 10 shows an organization chart 
that describes the procedure done since the measure of 
electric parameters until the computation of the fault 
location and the capacitance value.  

412×

Fig. 10.  Organization chart of the methodology. 

At first, the ANN was made with only one hidden 
layer, but the training time was too long and the results 
were unsatisfactory. A good architecture found 
(considering the number of neurons) was 8-16-12-2 (it 
was necessary here, two hidden layers). The ANN uses, 
as transfer function, logsigmoid (logsig – MATLAB) in 
the first three layers and the linear function (purelin – 
MATLAB) on the last one. Other architectures were 
tested, some of them presented better results for faults in 
the beginning of the TL, others, on the other hand, 
presented better results in the end or in the middle of the 
TL. In all cases, backpropagation with resilient training, 
[19], was used. 

8. Results 
Two aspects were considered to validate the ANN. Firstly 
the ANN should reach the proposed goal, in other words, 
it should show results substantially close to the input data 
in a very short period of time. If well succeeded, the ANN 
has to be submitted to a data test, different from the data 
training. In these tests, it was used two distinct values of 
capacitance, C'=3×10-10F and C''=8×10-10 F, for each 
tower. 

Initially the ANN was simulated with a goal of 0.05 
(average error for the location variable). Considering this 
goal, the output for the data training were very close to 
the data input, but in this situation the results for a sample 
test were not so good, probably it happened because the 
ANN had been over-trained and, consequently, it loses 
the generalization capability. 

Many different values for the goal were tested. A good 
response was found for the goal 0.1. This goal was 
reached in only 1817 epochs and in less than one minute. 
For this goal the training results were not so close to the 
data input, see Table 1, but the tests results were very 
satisfactory, see Table 2. 

In Tables 1, 2, the capacitance that causes the faults are 
represented by the letter C and the location of the fault is 
represented by ℓ. Here ℓ ൌ 0 indicate the normal 
condition of operation, other values of ℓ indicates a fault 
situation. 

TABLE 1 
Results for  training using a goal of 0.  a

A
1.
 TRAIN  DAT  ING ANN OUTPUT

C ሺ10ିଵ଴ሻ F ℓ C ሺ10ିଵ଴ሻ F ℓ
1.6344 0 1.7298 0.0587 

2.7449 

1 2.7567 0.9989 
2 2.9101 2.0481 
3 2.7015 2.9560 
4 4.5005 4.4947 
5 2.3009 4.8363 
6 2.6189 6.1987 
7 2.8944 6.7600 
8 2.8887 7.2711 
9 3.7397 8.6022 
10 2.8021 10.0606 

7.7749 

1 7.7902 0.9801 
2 7.7523 2.0141 
3 7.7726 3.0021 
4 7.6078 3.9452 
5 7.1515 5.0252 
6 7.7869 6.0418 
7 7.7647 7.1110 
8 7.4338 8.0044 
9 7.8057 9.0520 
10 7.7647 9.9779 

TABLE 2 
Results for sample test using capacitance C'=3×10-10F and a goal of 

0.1. 
SIMULATION
INPUT DATA

 
 ANN OUTPUT 

EVALUATION 
ℓ ℓ C (10-10) F C (10-10) F 
1 2.5061 0.9455 VERY GOOD 
2 1.6236 1.7084 VERY GOOD 
3 7.3484 3.8889 GOOD 
4 6.1924 5.0980 GOOD 
5 3.7849 3.5580 REASONABLE 

3.0000 
6 9.6529 5.6725 VERY GOOD 
7 4.6261 6.1948 GOOD 
8 5.8131 5.4770 BAD 
9 3.9266 9.7598 GOOD 
10 3.4943 7.3896 BAD 

For each result, it was attributed a grade according to 
the proximity of the input of ANN. A “Very Good” grade 
for the location if the rounded parameter was equal to the 
input value. “Good” if the rounded parameter was equal 
to an integer immediately down or up. “Reasonable” if 
the rounded parameter was equal to two units 
immediately down or up and “Bad” for the other cases. 

The capacitance values in almost every case was near 
to the data input, this shows that the parameter C well 
represents the insulation condition of the TL. 

9. Conclusion 
This work shows a methodology of detection, fault 
location and provides variables of insulation condition of 
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TL using as primordial idea the harmonic decomposition 
of the leakage current of a TL. An ANN and a 
mathematical model were used as a tool. The validation 
of the model was based in the theory of gaussian closed 
surfaces 

The results presented were considered satisfactory for 
fault location and for determining the value of 
capacitance that creates that fault. With these two 
parameters, it is possible to analyze the insulation 
condition of a TL in a particular stretch. 

The ANN was successfully tested with data acquired in 
other days. There is a tenuous limit between a fault 
situation and the normal condition of operation, because 
there are uncountable situations of faults and normal 
conditions.  

There is no data available (recorded data) of 
capacitance values for failure, fault or normal conditions 
for a TL. It is a problem that makes the fault classification 
much more difficult. 

The results were considered good and applicable. It is 
important to say that the proposed methodology is a 
prototype and that further researches are necessary to 
conclusively provide a predictive maintenance. However, 
this paper shows a real possibility of prediction and fault 
location for a TL using an idea conceptually different and 
innovative. 
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