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ABSTRACT
In this paper a sensorless adaptive robust control law is pro-
posed to improve the trajectory tracking performance of in-
duction motors. The proposed design employs the so called
vector (or field oriented) control theory for the induction
motor drives and the designed control law is based on an
integral sliding-mode algorithm that overcomes the system
uncertainties. The proposed sliding-mode control law in-
corporates an adaptive switching gain to avoid calculating
an upper limit of the system uncertainties. The proposed
design also includes a new method in order to estimate the
rotor speed. In this method, the rotor speed estimation error
is presented as a first order simple function based on the dif-
ference between the real stator currents and the estimated
stator currents. The stability analysis of the proposed con-
troller under parameter uncertainties and load disturbances
is provided using the Lyapunov stability theory.
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1 Introduction

Field oriented control method is widely used for advanced
control of induction motor drives. By providing decoupling
of torque and flux control demands, the vector control can
govern an induction motor drive similar to a separate ex-
cited direct current motor without sacrificing the quality
of the dynamic performance. However, the field oriented
control of induction motor drives presents two main prob-
lems that have been providing quite a bit research interest
in the last decade. The first one relies on the uncertainties
in the machine models and load torque, and the second one
is the precise computation of the motor speed without using
speed sensors.

The decoupling characteristics of the vector control is
sensitive to machine parameters variations. Moreover, the
machine parameters and load characteristics are not exactly
known, and may vary during motor operations. To over-
come the above system uncertainties, the variable structure
control strategy using the sliding-mode has been focussed
on many studies and research for the control of the AC
servo drive system in the past decade [2], [6]. However

the traditional sliding control schemes requires the prior
knowledge of an upper bound for the system uncertainties
since this bound is employed in the switching gain calcula-
tion. This upper bound should be determined as precisely
as possible, because as higher is the upper bound higher
value should be considered for the sliding gain, and there-
fore the control effort will also be high, which is undesir-
able in a practice. In order to surmount this drawback, in
the present paper it is proposed an adaptive law to calculate
the sliding gain which avoids the necessity of calculate an
upper bound of the system uncertainties.

Otherwise, a suitable speed control of an induction
motor requires a precise speed information, therefore, a
speed sensor, such a resolver and encoder, is usually ad-
hered to the shaft of the motor to measure the motor speed.
However, a speed sensor can not be mounted in some cases,
such as motor drives in adverse environments, or high-
speed motor drives. Therefore, sensorless induction mo-
tor drives are widely used in industry for their reliability
and flexibility, particularly in hostile environments. Speed
estimation methods using Model Reference Adaptive Sys-
tem MRAS are the most commonly used as they are easy
to design and implement [3]. However, the performance of
these methods is deteriorated at low speed because of the
increment of nonlinear characteristics [5], [6].

In this paper the authors proposes a robust sensorless
vector control scheme consisting on the one hand of an
adaptive rotor speed estimation method based on MRAS
in order to improve the performance of a sensorless vec-
tor controller in a low speed region. The proposed method
can provide a fast speed estimation and improve the per-
formance of other speed estimation methods in a low speed
region and at zero-speed. This paper is organized as fol-
lows. The rotor speed estimation is introduced in Section
2. In section 3, the proposed robust speed control with
adaptative sliding gain is presented, and in section 4 it is
proposed a continuous approximation of the control law.
Then the closed loop stability of the proposed scheme is
demonstrated using the Lyapunov stability theory, and the
exponential convergence of the controlled speed is also pro-
vided. In the Section 5, some simulation results are pre-
sented. Finally some concluding remarks are stated in the
last Section.
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2 Proposed rotor speed estimator

Many schemes [7], based on simplified motor models have
been devised to sense the speed of the induction motor from
measured terminal quantities for control purposes. In order
to obtain an accurate dynamic representation of the motor
speed, it is necessary to base the calculation on the coupled
circuit equations of the motor. However, the performance
of these methods is deteriorated at a low speed because of
the increment of nonlinear characteristic of the system [6].

The current paper proposes a new rotor speed esti-
mation method to improve the performance of a sensorless
vector controller in the low speed region and at zero speed.

Since the motor voltages and currents are measured
in a stationary frame of reference, it is also convenient to
express these equations in that stationary frame.
From the stator voltage equations in the stationary frame it
is obtained [4]:

ψ̇dr =
Lr

Lm

[
vds −Rsids − σLs

d

d t
ids

]
(1)

ψ̇qr =
Lr

Lm

[
vqs −Rsiqs − σLs

d

d t
iqs

]
(2)

where ψ is the flux linkage; L is the inductance; v is the
voltage; R is the resistance; i is the current and σ =
1 − L2

m/(LrLs) is the motor leakage coefficient. The
subscripts r and s denotes the rotor and stator values re-
spectively refereed to the stator, and the subscripts d and q
denote the dq-axis components in the stationary reference
frame.
Using the rotor flux and motor speed, the stator current is
represented as:

ids =
1

Lm

[
ψdr + wr Tr ψqr + Tr ψ̇dr

]
(3)

iqs =
1

Lm

[
ψqr − wr Tr ψdr + Tr ψ̇qr

]
(4)

where wr is the rotor electrical speed and Tr = Lr/Rr is
the rotor time constant.

From the equations (3) and (4) and using the esti-
mated speed, the stator current is estimated as:

îds =
1

Lm

[
ψdr + ŵr Tr ψqr + Tr ψ̇dr

]
(5)

îqs =
1

Lm

[
ψqr − ŵr Tr ψdr + Tr ψ̇qr

]
(6)

where îds and îqs are the estimated stator currents and ŵr

is the estimated rotor electrical speed.
Subtracting the equations of the estimated stator cur-

rents (5) and (6) from the equations of the stator currents
(3) and (4) the difference in the stator current is obtained
as:

ids − îds =
Tr

Lm
ψqr (wr − ŵr) (7)

iqs − îqs = − Tr

Lm
ψdr (wr − ŵr) (8)

In the above equations (7) and (8), the difference of
the stator current and the estimated stator current is a si-
nusoidal value because it is a function of the rotor flux.
However, if equation (7) is multiplied by ψqr and equation
(8) is multiplied by ψdr and then are added together it is
obtained:

(ids − îds)ψqr − (iqs − îqs)ψdr =
Tr

Lm
ψqr (wr − ŵr) (ψ2

dr + ψ2
dr) (9)

Unlike the equations (7) and (8), equation (9) uses the
rotor flux magnitude which remains constant. From equa-
tion (9) the error of the rotor speed is obtained as follows:

ewr = wr − ŵr = c
[
(ids − îds)ψqr − (iqs − îqs)ψdr

]

(10)
where:

c =
Lm

Tr

1
ψ2

dr + ψ2
qr

=
Lm

Tr ψ2
r

Therefore, from the equation (10) the speed estima-
tion error is calculated from the stator current and rotor
flux.

Using Lyapunov stability theory we can derive the
following adaptation law for speed estimation:

dŵr

dt
= α ewr , α > 0 (11)

where α is de adaptation gain that should be chosen greater
than zero.

To demonstrate that the previous adaptation law
makes the estimated speed error drops into zero, we can
define the following Lyapunov function candidate:

V (t) =
1
2

e2
wr

(t)

On the basis of the fact that the velocity of outer con-
trol loop is much slower than the estimated inner loop,
hence the assumption of wr approaching a constant is rea-
sonable on deriving the following equations. Then, the time
derivative of the previous Lyapunov function candidate is:

V̇ (t) = ewr
ėwr

= ewr (− ˙̂wr)
= −α e2

wr
(12)

Using the Lyapunov’s direct method, since V (t) is
clearly positive-definite, V̇ (t) is negative definite and V (t)
tends to infinity as ewr

(t) tends to infinity, then the equi-
librium at the origin ewr (t) = 0 is globally asymptotically
stable. Therefore ewr (t) tends to zero as the time t tends to
infinity.

Moreover, taking into account the previous Lyapunov
function we can conclude that the rotor speed error con-
verges to zero exponentially. From equation (12) we can
obtain that V derivative verifies:
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V̇ (t) = −α e2
wr

= −α

2
V (t) (13)

The solution of the previous differential equation is:

V (t) =
1
2

e2
wr

(t) = V (t0) exp(−α

2
t)

which implies that the rotor speed error converges to
zero exponentially.

Therefore, the rotor speed wr can be calculated using
the proposed speed estimator which only make use of the
measured stator voltages and currents in order to estimate
the rotor speed.

3 Variable structure robust speed control
with adaptive sliding gain

In general, the mechanical equation of an induction motor
can be written as:

Jẇm + Bwm + TL = Te (14)

where J and B are the inertia constant and the viscous fric-
tion coefficient of the induction motor system respectively;
TL is the external load; wm is the rotor mechanical speed
in angular frequency, which is related to the rotor electri-
cal speed by wm = 2 wr/p where p is the pole numbers
and Te denotes the generated torque of an induction motor,
defined as [4]:

Te =
3p
4

Lm

Lr
(ψe

dri
e
qs − ψe

qri
e
ds) (15)

where ψe
dr and ψe

qr are the rotor-flux linkages, with the
subscript ‘e’ denoting that the quantity is refereed to the
synchronously rotating reference frame; ieqs and ieds are the
stator currents, and p is the pole numbers.

The angular position of the rotor flux vector (ψ̄r) re-
lated to the d-axis of the stationary reference frame may be
calculated by means of the rotor flux components in this
reference frame ( ψdr, ψqr) as follows:

θe = arctan
(

ψqr

ψdr

)
(16)

where θe is the angular position of the rotor flux vector.
Using the field-orientation control principle [4] the

current component ieds is aligned in the direction of the ro-
tor flux vector ψ̄r, and the current component ieqs is aligned
in the direction perpendicular to it. At this condition, it is
satisfied that:

ψe
qr = 0, ψe

dr = |ψ̄r| (17)

Therefore, taking into account the previous results,
the equation of induction motor torque (15) is simplified
to:

Te =
3p

4
Lm

Lr
ψe

dri
e
qs = KT ieqs (18)

where KT is the torque constant, and is defined as follows:

KT =
3p

4
Lm

Lr
ψe∗

dr (19)

where ψe∗
dr denotes the command rotor flux.

With the above mentioned proper field orientation, the
dynamic of the rotor flux is given by [4]:

dψe
dr

d t
+

ψe
dr

Tr
=

Lm

Tr
ieds (20)

Then, the mechanical equation (14) becomes:

ẇm + awm + f = b ieqs (21)

where the parameters are defined as:

a =
B

J
, b =

KT

J
, f =

TL

J
; (22)

Now, we are going to consider the previous mechani-
cal equation (21) with uncertainties as follows:

ẇm = −(a +4a)wm − (f +4f) + (b +4b)isq (23)

where the terms 4a, 4b and 4f represents the uncertain-
ties of the terms a, b and f respectively. It should be noted
that these uncertainties are unknown, and that the precise
calculation of its upper bound are, in general, rather diffi-
cult to achieve.
Let us define the tracking speed error as follows:

e(t) = ŵm(t)−w∗m(t) = wm(t)−w∗m(t)− w̃m(t) (24)

where w∗m is the rotor speed command and w̃m = wm−ŵm

is the rotor speed estimation error, that (as it is demon-
strated in section II) converges to zero exponentially.

Taking the derivative of the previous equation with
respect to time yields:

ė(t) = ẇm(t)− ẇ∗m(t)− ˙̃wm(t) = −a e(t) + u(t) + d(t)
(25)

where the terms collected in the signals u(t) and d(t) are:

u(t) = b isq(t)− aw∗m(t)− f(t)− ẇ∗m(t) (26)

d(t) = −4a wm(t)−4f(t) +4b ieqs(t)− ˙̃wm(t) (27)

To compensate for the above described uncertainties
that are presented in the system, it is proposed a sliding
adaptive control scheme. In the sliding control theory, the
switching gain must be constructed so as to attain the slid-
ing condition [9]. In order to meet this condition a suitable
choice of the sliding gain should be made to compensate
for the uncertainties. For selecting the sliding gain vector,
an upper bound of the parameter variations, unmodelled
dynamics, noise magnitudes, etc. should be known, but
in practical applications there are situations in which these
bounds are unknown, or at least difficult to calculate. A
solution could be to choose a sufficiently high value for the
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sliding gain, but this approach could cause a to high control
signal, or at least more activity control than it is necessary
in order to achieve the control objective.

One possible way to overcome this difficulty is to es-
timate the gain and to update it by some adaptation law, so
that the sliding condition is achieved.

Now, we are going to propose the sliding variable
S(t) with an integral component as:

S(t) = e(t) +
∫ t

0

(a + k)e(τ) dτ (28)

where k is a constant gain, and a is a parameter that was
already defined in equation (22).

Then the sliding surface is defined as:

S(t) = e(t) +
∫ t

0

(a + k)e(τ) dτ = 0 (29)

Now, we are going to design a variable structure speed con-
troller, that incorporates an adaptive sliding gain, in order
to control the AC motor drive.

u(t) = −k e(t)− β̂(t)γ sgn(S) (30)

where the k is the gain defined previously, β̂ is the esti-
mated switching gain, γ is a positive constant, S is the slid-
ing variable defined in eqn. (28) and sgn(·) is the signum
function.

The switching gain β̂ is adapted according to the fol-
lowing updating law:

˙̂
β = γ |S| β̂(0) = 0 (31)

where γ is a positive constant that let us choose the adapta-
tion speed for the sliding gain.

In order to obtain the speed trajectory tracking, the
following assumptions should be formulated:

(A 1) The gain k must be chosen so that the term (a + k)
is strictly positive. Therefore the constant k should be
k > −a.

(A 2) There exits an unknown finite non-negative switch-
ing gain β such that

β > dmax + η η > 0

where dmax ≥ |d(t)| ∀ t and η is a positive constant.

Note that this condition only implies that the uncer-
tainties of the system are bounded magnitudes.

(A 3) The constant γ must be chosen so that γ > 0.

Theorem 1 Consider the induction motor given by equa-
tion (23). Then, if assumptions (A 1), (A 2) and (A 3) are
verified, the control law (30) leads the rotor mechanical
speed so that the speed error e(t) = ŵm(t) − w∗m(t) =
wm(t)−w∗m(t)− w̃m(t) tends to zero as the time tends to
infinity, and then wm(t) tends to w∗m(t).

The proof of this theorem will be carried out using the
Lyapunov stability theory [2].

Finally, the torque current command, i∗sq(t), can be
obtained directly substituting eqn. (30) in eqn. (26):

i∗sq(t) =
1
b

[
k e− β̂γ sgn(S) + aw∗m + ẇ∗m + f

]
(32)

Therefore, the proposed variable structure speed con-
trol with adaptive sliding gain resolves the speed tracking
problem for the induction motor, with some uncertainties
in mechanical parameters and load torque.

4 Continuous approximation of switching
control law

A frequently encountered problem in sliding control is that
the control signal given by eqn.(30) is not smooth since the
sliding control law is discontinuous across the sliding sur-
faces, which causes the chattering phenomenon. Chatter-
ing is undesirable in practice, since it involves high control
activity and further may excite high-frequency dynamics.
This situation can be avoided by smoothing out the con-
trol chattering within a thin boundary layer of thickness
ξ > 0 neighboring the switching surface [1], [8] . On
the other hand, it is well known that when in an adaptive
control system the signals are not persistently exciting the
parameter drift phenomenon may appear [8]. In these situ-
ations many different strategies can be applied, from com-
plex methods to confer self-excitation capability to the sys-
tem without the presence of external exciting signals, to
simpler approaches based on the use of dead zones, as it
will be done in this paper to avoid the possible parameter
drift phenomenon that may appear in the proposed sliding
gain adaptation law (eqn. 31)

In this way, some modifications should be done in the
control law (30) and in the sliding gain adaptation law (31),
to overcome the above mentioned problems:

i) In order to smooth the control law (30), the sign func-
tion included in it is replaced by a saturation function,
so that it becomes:

u(t) = −k e(t)− β̂(t)γ sat
(

S

ξ

)
(33)

where the saturation function sat(·) is defined in the
usual way:

sat
(

S

ξ

)
=





sgn(S) if |S| > ξ

S

ξ
otherwise.

52



and ξ represents the thickness of the boundary layer
neighboring the switching surface.

ii) In order to avoid the parameter drift phenomenon, the
sliding gain adaptation law is modified to:

˙̂
β = γ |So| β̂(0) = 0 (34)

where So is defined by:

So = S − ξ sat
(

S

ξ

)

It is interesting to point out that So is a measure of
the distance from the sliding surface S to the interval
[−ξ, ξ]:

So =

{
S − ξ if |S| > ξ

0 otherwise.
(35)

From the previous equation it is concluded that Ṡo =
Ṡ when S is outside the interval [−ξ, ξ], while Ṡo = 0
otherwise.

Theorem 2 Consider the induction motor given by equa-
tion (23). Then, if assumptions (A 1), (A 2) and (A 3) are
verified, the control law (33) leads the rotor mechanical
speed so that the speed tracking error e(t) = ŵm(t) −
w∗m(t) can be made as small as desired by choosing an ad-
equately small boundary layer thickness ξ.

The proof of this theorem will be carried out using the
Lyapunov stability theory.

Proof : Let us define the following Lyapunov function can-
didate:

V (t) =
1
2
So(t)So(t) +

1
2
β̃(t)β̃(t) (36)

whose time derivative is given by:

V̇ (t) = So(t)Ṡ(t) + β̃(t) ˙̃
β(t)

=So · [ė + (a + k)e] + β̃(t) ˙̂
β(t)

=So · [(−a e + u + d) + (k e + a e)] + β̃ γ|So|
=So · [u + d + k e] + (β̂ − β)γ|So|
=So ·

[
−k e− β̂γ sat(S/ξ) + d + k e

]
+ (β̂ − β)γ|So|

=So ·
[
d− β̂γ sat(S/ξ)

]
+ β̂γ|So| − βγ|So|

=dSo − β̂γ|So|+ β̂γ|So| − βγ|So| (37)
≤|d||So| − βγ|S|
≤ |d||So| − (dmax + η)γ|S|
= |d||So| − dmax γ|So| − η γ|So|
≤−η γ|So| (38)

then
V̇ (t) ≤ 0 (39)

It should be noted that in the proof the equations (28),
(25), (33) and (34) and the assumptions (A 2) and (A 3)
have been used. It has been also used that by means of So

definition (eqn. 35), it is obtained that So sat(S/ξ) = |So|.
Using the Lyapunov’s direct method, since V (t) is

clearly positive-definite, V̇ (t) is negative semidefinite and
V (t) tends to infinity as So(t) and β̃(t) tends to infinity,
then the equilibrium at the origin [So(t), β̃(t)] = [0, 0] is
globally stable, and therefore the variables So(t) and β̃(t)
are bounded. Since So(t) is bounded then S(t) is also
bounded, and hence it is deduced that e(t) is bounded.

From equations (25) and (29) it is obtained that

Ṡ(t) = ke(t) + d(t) + u(t) (40)

Then, from equation (40) we can conclude that Ṡ(t)
is bounded because e(t), u(t) and d(t) are bounded. Since
Ṡ(t) is bounded then from equation (35) it may be deduced
that Ṡo(t) is a bounded value.

Now, from equation (37) it is concluded that

V̈ (t) = d Ṡo − β γ
d

dt
|So(t)| (41)

which is a bounded value because Ṡo(t) is bounded.

Under these conditions, since V̈ is bounded, V̇ is a
uniformly continuous function, so by means of Barbalat’s
lemma we can conclude that V̇ → 0 as t → ∞, which
implies that So(t) → 0 as t → ∞, or equivalently that S
converges to the interval [−ξ, ξ] asymptotically, so under
the definition of S, the error (e = wm − w∗m) converges to
a small value depending on the boundary thickness ξ.

The torque current command, i∗sq(t), can be obtained
directly substituting eqn. (33) in eqn. (26):

i∗sq(t) =
1
b

[
k e− β̂γ sat

(
S

ξ

)
+ a w∗m + ẇ∗m + f

]

(42)

5 Simulation Results

In this section we will study the speed regulation perfor-
mance of the proposed adaptive sliding-mode field ori-
ented control under reference and load torque variations by
means of simulation examples.

The block diagram of the proposed robust control
scheme is presented in figure 1.

The block diagram of the proposed robust control
scheme is presented in figure 1, where the block ‘VSC
Controller’ represent the proposed adaptive sliding-mode
controller, and it is implemented by equations (28), (32),
and (31). The block ‘limiter’ limits the current applied
to the motor windings so that it remains within the limit
value, and it is implemented by a saturation function. The
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6

Figure 1. Block diagram of the proposed adaptive sliding-mode control

block ‘dqe → abc’ makes the conversion between the syn-
chronously rotating and stationary reference frames. The
block ‘Current Controller’ consists of a three hysteresis-
band current PWM control, which is basically an instanta-
neous feedback current control method of PWM where the
actual current (iabc) continually tracks the command cur-
rent (i∗abc) within a hysteresis band. The block ‘PWM In-
verter’ is a six IGBT-diode bridge inverter with 780 V DC
voltage source. The block ‘Field Weakening’ gives the flux
command based on rotor speed, so that the PWM controller
does not saturate. The block ‘ie∗ds Calculation’ provides the
current reference ie∗ds from the rotor flux reference through
the equation (20). The block ‘wr and Flux Calculation’
represent the proposed rotor speed estimator and flux cal-
culator, and is implemented by the equations (11), (1) and
(2) respectively and the block ‘IM’ represents the induction
motor.

The induction motor used in this case study is a 50
HP, 460 V, four pole, 60 Hz motor having the following pa-
rameters: Rs = 0.087 Ω, Rr = 0.228 Ω, Ls = 35.5 mH ,
Lr = 35.5 mH , and Lm = 34.7 mH .

The system has the following mechanical parameters:
J = 1.662 kg.m2 and B = 0.12 N.m.s. It is assumed
that there are an uncertainty around 20 % in the system
parameters, that will be overcome by the proposed adaptive
sliding control.

The following values have been chosen for the con-
troller parameters: k = 25, γ = 15 and ξ = 0.1.

In the following examples the motor starts from a
standstill state and we want the rotor speed to follow a
speed command that starts from zero and accelerates un-
til the rotor speed is 130 rad/s. The system starts with an
initial load torque TL = 0 N.m, and at time t = 0.6 s the
load torque steps from TL = 0 N.m to TL = 200 N.m and
it is assumed that there is an uncertainty around 50 % in the

load torque.

5.1 First Example

In this example, shown in Figures (2-4) it is employed the
control law proposed in section 3 where it is used a signum
function in the sliding mode control law. Figure 2 shows es-
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Figure 2. Estimated, Real and Reference rotor speed

timated rotor speed (solid line), the real rotor speed (dash-
dot line) and the desired rotor speed (dashed line). As it
may be observed, after a transitory time in which the slid-
ing gain is adapted, the rotor speed tracks the desired speed
in spite of system uncertainties. However, at time t = 0.6 s
a little speed error can be observed. This error appears be-
cause of the torque increment at this time, and then the con-
trol system lost the so called ‘sliding mode’ because the
actual sliding gain is too small to overcome the new uncer-
tainty introduced in the system due to the new torque. But
then, after a small time the sliding gain is adapted so that

signals (rad/s)
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this gain can compensate the system uncertainties and so
the rotor speed error is eliminated. In this figure it can also
be observed that the rotor speed adaptation law performs
well in a low speed region. Figure 3 presents the time evo-
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Figure 3. Estimated sliding Gain

lution of the estimated sliding gain. The sliding gain starts
from zero and then it is increased until its value is high
enough to compensate for the system uncertainties. Then
at time 0.32 s the sliding gain is remained constant because
the system uncertainties remain constant as well. Later at
time 0.6 s, there is an increment in the system uncertainties
caused by the rise in the load torque. Therefore the sliding
gain is adapted once again in order to overcome the new
system uncertainties. As it can be seen in the figure, after
the sliding gain is adapted it remains constant again, since
the system uncertainties remains constant as well.

It should be noted that the adaptive sliding gain al-
lows to employ a smaller sliding gain. In this way it is not
necessary to choose the slading gain value high enough to
compensate all the possible system uncertainties as used in
conventional sliding control laws. With the proposed adap-
tive scheme the sliding gain is adapted (if necessary) when
a new uncertainty appears in the system in order to sur-
mount this uncertainty. Figure 4 shows the motor torque.
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Figure 4. Motor torque (N.m)

This figure shows that in the initial state, the motor torque
has a high initial value in the speed acceleration zone be-
cause it is necessary a high torque to increment the rotor
speed owing to the rotor inertia, then the value decreases
in a constant region and finally increases due to the load
torque increment. In this figure it may be observed that
in the motor torque appears the so-called chattering phe-
nomenon due to the signum function presented in the con-
trol law. It should be noted that the chattering involves high
control activity and may further excite high-frequency dy-
namics. This undesirable effect can be avoided using the
modified adaptive sliding control law proposed in Section
4, as it is shown in the next simulation results.

5.2 Second Example

In this second example, shown in Figures (5-7) it is em-
ployed the control law proposed in section 4 where the con-
trol law is smoothed out within a boundary layer in order
to avoid the chattering phenomenon that is undesirable in
practice.
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Figure 5. Estimated, Real and Reference rotor speed

Figure 5 shows estimated rotor speed (solid line), the
real rotor speed (dash-dot line) and the desired rotor speed
(dashed line). Similarly to the previous example, after a
transitory time in which the sliding gain is adapted, the ro-
tor speed tracks the desired speed in spite of system uncer-
tainties. Figure 6 presents the time evolution of the esti-
mated sliding gain. As before, the sliding gain starts from
zero and then it is increased until its value is high enough in
order to compensate the system uncertainties. Then at time
t = 0.6 s, the sliding gain is adapted once again in order to
overcome the new system uncertainties caused by the the
rise in the load torque. Figure 7 shows the motor torque.
As in the first example the motor torque presents a high
initial value in the speed acceleration zone, then the value
decreases in a constant region and at time t = 0.6 s the
motor torque increases due to the load torque increment.
However, as it may be observed, unlike the previous ex-
ample, in the present example the chattering phenomenon
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does not appear in the motor torque, because the control
signal is smoothed out within a boundary layer by means
of a saturation function instead of signum function. In con-
sequence, the smoothed control law proposed in Section 4
presents lower control activity than the previous one pre-
sented in Section 3, and therefore the motion of the motor
drive in this case would be softer than in the previous case.

6 Conclusion

In this paper a sensorless adaptive sliding mode vector con-
trol has been presented. The rotor speed adaptation law is
based on stator current equations and rotor flux equations
in the stationary reference frame, and using simulation ex-
amples it is demonstrated that this adaptation law performs
well in a low speed region. It is proposed a new adap-
tive variable structure control that is robust under uncer-
tainties caused by parameter error or by changes in the load
torque. Moreover, the proposed variable structure control
incorporates an adaptive algorithm to calculate the sliding
gain value. The adaptation of the sliding gain, on the one
hand avoids the necessity of computing the upper bound
of the system uncertainties, and on the other hand allows

to employ as smaller sliding gain as possible in order to
overcome the actual system uncertainties. Therefore, the
control signal of our proposed variable structure control
schemes will be smaller that the control signals of the tradi-
tional variable structure control schemes. Finally, by means
of simulation examples, it has been shown that the pro-
posed control scheme performs reasonably well in practice,
and that the speed tracking objective is achieved under un-
certainties in the parameters and load torque.
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