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ABSTRACT 
This paper presents a methodology to predict a security 
index of power systems for forecasted operating points 
based on a voltage security diagnostic and a modal 
analysis of QV sensitivity matrix in regard to the voltage 
stability modeling with fuzzy inference systems, like 
ANFIS. Local variables like active and reactive lines 
power flows are used as input variables and reduced by 
the technique known as principal component analysis 
(PCA). Two methods are used in order to find a security 
index for the inference process. The first method uses the 
loading parameter of the continuation power flow and the 
second uses a QV modal analysis criteria. These 
methodologies allow the calculation of the distance from 
the current operation point to the collapse point taking 
into account different possible conditions in a day ahead 
operating planning. These methodologies are tested and 
validated with the RTS-96 single area and the computer 
times of each method are compared.  
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1.  Introduction 
 
Modern power systems have evolved to a point in which 
the voltage stability has became the main limiting 
phenomenon for different operating conditions, such as 
the growth in the demand, the increase of limitations 
imposed by environmental restrictions to the grid 
expansion, delays imposed by the energy market 
transition, and the hourly change of the network topology 
caused by the introduction of energy markets. The 
importance of the voltage collapse has increased in the 
power systems security assessment as a consequence of 
major events related to this phenomenon, like blackouts in 
large cities as London, Tokyo and New York, making 
evident the necessity to have diagnostic models for real 
time applications. This phenomenon is characterized by 
loss of control over voltage levels in a power system, but 
all mechanisms related to this phenomenon are not yet 
identified. However, it is known that voltage instability 

occurs when the power system works on overstressed 
conditions [1]. This paper presents two methods as a tool 
for diagnosis and prediction, which measures the distance 
between forecasted operating point and voltage collapse 
point for different network topologies that are probably 
achieved in a current day. 
 
The analysis of different uncertainties during the 
operation of the power system is included through the 
most critic contingencies analysis, the stochastic 
characteristic of loading and the day ahead economic 
dispatch. The proposed model is constructed using neuro-
fuzzy networks, which is a tool that gives the adaptive 
characteristics of the model. Even though, there are other 
tools that use fuzzy logic theory. Most of them have taken 
as input variables global system indicators, such as 
reactive power margin, maximum eigenvalue of the 
inverse Jacobian matrix and/or minimum voltage of the 
system [2]-[5]. The work made in [6] develops a tool with 
fuzzy logic using local parameters such as voltage and 
voltage angle in all buses. This paper is focused taking 
into account that some of the voltage collapse events that 
have been registered, relates to the development of local 
problems and high demand conditions. So, it proposes a 
tool that uses as explaining variables the active and 
reactive power flow on transmission lines and as security 
index the loading distance from the current operating 
point to the voltage collapse boundary, found by using the 
continuation power flow (CPF) [7], on the first place. On 
the second place, the other methodology consisted in 
finding the contingencies ranking using participation 
factor analysis through a QV analysis. 
 
2.  Methodology 
 
A fuzzy inference process is proposed in order to predict 
voltage security margins based on the current conditions 
of an operating point of the power system and previous 
observed or generated conditions. Two different methods 
are evaluated in order to rank the voltage security 
contingencies. The method 1 uses the CPF and the 
method 2 uses a QV analysis. The following are the main 
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steps of the procedure for both methods, where the 
difference between them is step 2: 
1. Initial Database construction by generation of random 

load conditions due the demand 
2. Computation of contingency ranking and loading 

parameters (security margin) for each load conditions 
in the Database through one of the methods. 

3. Selection of variables for the Fuzzy Inference using 
the Principal Component Analysis. 

4. Training a neuro-fuzzy network. 
5. Validation of the trained fuzzy-network. 
 
Both proposed methodologies are tested and validated on 
the RTS-96 single area system [8], which has 24 buses. 
Firstly, an offline database with the 76 active and reactive 
lines flow is built [9]. In addition, the database includes 
the maximum loading parameter obtained from the CPF 
for each considered topology. Then, variables for the 
inference process are selected using three procedures: 
first, variables with minimum variance are eliminated; 
second, variables with high correlation are eliminated; 
third, the database without collinearly problems is 
simplified using the principal component analysis 
technique (PCA) [10]. The new database is used to check 
the training of the neuro-fuzzy network. The advantage of 
this methodology over traditional techniques is that it 
requires less real time computing effort, which makes it 
useful for online applications of monitoring and analysis 
of the power system state in real time and for predicting 
the operating performance on a “Day Ahead” planning 
framework. Also, the system is modeled based on 
observations of its own behavior, making easy the 
inclusion of new information of its behavior, as a 
consequence of the learning capability of neuro-fuzzy 
networks. Besides that, the modal analysis permits to 
lessen even more the time computing effort. 
 
2.1 Database Construction 
 
At first a database is built with different random load 
conditions for each hour. Generation of random load 
conditions is made taking into account correlations 
between loads in different nodes. The assumption used to 
model the correlation between loads is that loads that are 
nearly localized between each others are highly correlated 
and loads that are far localized between each others are 
low correlated.  Loads were modeled like normal random 
variables, where mean value is given by the mean load in 
its corresponding node, considering an ordinary day for 
the corresponding hour. The correlation matrix can vary 
from one hour to other. The probabilistic model allows 
the definition of correlated loads’ zones, stated intra-
group region of buses, based on high positive correlations. 
By contrast, the model allows the definition of inter-
region correlations to represent non-correlated zones of 
buses, normally with low correlation absolute values. The 

number of different load conditions is determined by the 
reliability coefficient α, the expected relative error, the 
mean and variance as it is shown in (1). Where κ≈1.96 if 
α=95%. The respective confidence interval for the relative 
error would be (2). If that interval contains the zero, it 
means that the error is not skewed with that mean, 
variance and α. 
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Another uncertainty in the power system operation is the 
topology due to changes provoked by contingencies. 
Therefore, as the power system changes from one 
topology to another, a contingency analysis is required. 
The first method uses as ranking criteria the loading 
parameter of the CPF [6]. The second method uses as 
ranking criteria the relative importance of each branch in 
the QV sensitivity behavior, explained below in Section 
2.2 (IBPF). The contingency ranking is computed for the 
entire load conditions in the database, as a consequence of 
the variableness of contingencies ranking from one 
operation point to another one. The objective is to observe 
how different the ranking is from one operation point to 
another and also, to compare both ranking methods. With 
these results, the decision to be taken would be either to 
fix the contingencies ranking for each hour, or not.  
 
The measurement of the severity is assumed to be the 
distance from the actual operating point to the collapse 
point given the different network topologies, determined 
by each contingency. The severity is ranked from the 
smaller maximum loading parameter to the highest 
loading parameter, in the case of the CPF method. In the 
case of the QV analysis, it is ranked from the greatest 
IBPF to the smallest. Then, a matrix is constructed, in 
which each row represents a different contingency in 
order of criticality where, the first row has the most 
critical contingency; the second one has the next critical 
contingency, and so on. In general, the results show that 
the ranking does not have significant variations between 
different load conditions and between each one of the 
methods. The most critical contingencies are chosen in 
general for any load condition. The criteria is to take a 
mean value for the maximum loading parameter obtained 
for each load condition for each contingency, and then 
order them from minimum to maximum. The database 
with all the information about load and contingencies is 
built with the active and reactive lines flows. The 
database includes this information for each load condition 
and for the most critical contingencies. The output 
variable is the maximum loading parameter for each case 
of the above. In addition, those branches which are radial 
are not taken into account, because any contingency there 
would not affect the entire system. 
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2.2 Contingency Ranking through IBPF 
 
There have been made some techniques based on the 
analysis of operating conditions called snapshots, 
representing incremental changes in response to the 
voltages of a system to incremental changes of the 
demand. That is, a QV sensitivity analysis [11]. The QV 
sensitivity is obtained by the operating condition analyzed 
in function of the Jacobian matrix of the corresponding 
power flow. So, the equation that relates the behavior of 
incremental changes between injected power and voltages 
in each bus is expressed as (3). Making ΔP=0, it could be 
established a close relationship between ΔQ and ΔV 
through the reduced Jacobian matrix JR, shown in (4). 
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The reduced Jacobian matrix can be diagonalized as it is 
shown in (5), where ξi is the ith column of ξ, ηi the ith row 
of η, and λi is the ith row and column of Λ. In other 
words, ξ and η are the respective eigenvectors of each 
eigenvalue λ, as shown in (6). As ξ=η-1, it can be obtained 
a relationship between the modal variations of voltage and 
reactive power as shown in (7), and the relative weight of 
each k node in modal sensitivity i, through the nodal 
participation factor pki shown in (8). 
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The system is stable in voltage if λi is positive, because it 
warrantees that an incremental change in the magnitude of 
the reactive power injected to each bus increases the 
incremental voltage in that bus. These λi are critical when 
they approach zero. In [12] and [13] is defined an index of 
the participation of each bus for each λi, called the 
Participation Factor (PF). For each mode i, it is possible 
to know which branches consume a larger amount of 
reactive power given a modal incremental reactive power. 
So, the branches which have the largest PF are assumed as 
the ones which could lead to the most critical 
contingencies. A redefinition of the PF of each branch can 
be proposed, applying weighting values to each 
eigenvalue in the system and to the incremental losses of 
the reactive power flows in each branch, ∆Qloss-bi. In this 
way, there can be selected the values that correspond to 
the most significant modes, obtaining a new index, called 
“Improved Participation Factor” (IPF) shown in (9). Wij is 

chosen according to the sum of the respective 
participation factors. If that sum is greater than 0.15 (an 
established value which gives good results), Wij is 1; 
otherwise, Wij is zero.  This factor can be weight again to 
the largest value of the IPF through branches, obtaining 
the variable given in (10). 
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Finally, this expression is normalized in relation to the 
sum of all the branches, obtaining the proposed index, 
called “Improved Branch Participation Factor” (IBPF), 
given in (11). 
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In order to make the contingency ranking and the 
selection of contingencies N-1, the procedure made to use 
this index is as follows:  
 

1. Run a power flow  
2. Find the Jacobian matrix with (4) 
3. Find the eigenvalues and the participation factors 
with (8) and find the IBPF for each branch using (11). 
4. Establish a reference value which serves to 
identify the critical contingencies to the non-critical 
ones. 
5. Group the critical contingencies, using the 
previous step. 
 

2.3 Variable Selection 
 
This database has a lot of variables and the model should 
not be constructed with so many variables because of 
complexity, computing time, and loss of generalization 
capability. So there are chosen two initial filtering 
methodologies: variables with minimum variance and 
variables that are highly correlated. This method permits 
to create a new database which is passed through the 
principal component analysis (PCA), reducing its 
dimensionality [10]. PCA makes a linear transformation 
that transforms the data to a new coordinate system such 
that the greatest variance by any projection of the data 
comes to lie on the first coordinate, the second greatest 
variance on the second coordinate, and so on. The 
disadvantage that PCA technique represents is that it 
makes a linear transformation from the original space 
state to a new space state with dimensionality reduction, 
causing that each variable of the new database does not 
correspond to a specific physical variable. 
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2.4 Fuzzy Inference Process 
 
An adaptative neuro-fuzzy-network (ANFIS) is the hybrid 
between two mapping techniques, neural network and 
fuzzy logic [14]. The fuzzy model used in this 
methodology is the Sugeno inference system and the 
calculations used in the inference process are made by a 
neural network. Certain percentage of the database is used 
as training data and the rest as checking data. 
 
3. Test Results 
 
The methodology is tested with the test system RTS-96 
single area [8], assuming high correlation (around 0.8) in 
loads that are close together (same area), and low 
correlation (approximately 0.2) between loads that are 
distant (different operating areas). The contingency 
ranking is made using all the random load conditions 
previously generated. The CPF method is chosen using as 
stopping criteria the last point in which the power flow 
converges. The measurement of the severity is defined as 
the loading parameter taken in the limit in which power 
flow stops converging. The QV analysis method takes 
into account that this system has only one area.  
 
Fig. 1 shows the criticality of contingencies for all load 
conditions. Y label represents all contingencies and X 
label represents all load conditions. The gray scale bar 
shows the range of the maximum loading parameter, 
where the smallest number represents the most insecure 
conditions and the greatest represents secure conditions. 
Conditions are constituted by two elements, the 
contingency and the load condition. Thus, a constant gray 
scale color through a row denotes that the corresponding 
contingency is critical in almost all load conditions. 
Likewise, a constant gray scale color through a column 
denotes that the corresponding load condition is critical 
for nearly all contingencies. Table 1 and Table 2 show the 
different contingency ranking with each method. The 
relevant differences between both of them are due to some 
lines that are radial and they should not be taken into 
report. For instance, the contingency 11 is the most 
critical for the CPF method, because it splits up the 
system into two different subsystems. This means that the 
generator at the bus 7 has to supply all the demand for 
that load. On the other hand, this contingency is not so 
critical in the QV analysis, because it refers to the mode 
and its affection to the entire system.  
 
Fig. 1 shows that contingencies 7, 10, 11, 16 and 27 are 
the most critical, because they have in front a row of a 
black tonality. These results can also be seen in Table 1, 
which shows the contingency ranking for all single 
contingency using the CPF. The most critical 
contingencies are related with lines in the 138 kV area of 
the RTS-96 single area and their absence causes load 

isolation. On the other hand, the QV sensitivity shows 
another type of ranking, shown in Table 2.  
 

 
Fig. 1 Severity of contingencies for 30 load conditions. 

 
Table 1. Contingency Ranking using CPF 

Ranking No From To Ranking No From To 
1 11 7 8 20 12 9 4 
2 10 10 6 21 22 10 5 
3 7 15 24 22 6 9 3 
4 27 24 3 23 13 13 23 
5 16 11 10 24 29 19 16 
6 17 12 10 25 24 16 15 
7 18 16 14 26 34 17 16 
8 20 13 12 27 35 1 2 
9 14 13 11 28 28 18 17 
10 23 11 9 29 36 23 20 
11 5 2 6 30 37 23 20 
12 15 1 5 31 1 19 20 
13 4 10 8 32 30 19 20 
14 3 2 4 33 32 22 17 
15 19 14 11 34 33 18 21 
16 2 9 8 35 31 18 21 
17 21 1 3 36 38 21 22 
18 8 23 12 37 25 21 15 
19 9 10 8 38 26 21 15 

 
Table 2. Contingency Ranking using QV analysis 

Ranking No From To Ranking No From To 
1 23 16 14 20 19 14 11 
2 21 23 12 21 30 18 17 
3 7 24 3 22 1 1 2 
4 17 12 10 23 5 2 6 
5 27 15 24 24 36 23 20 
6 16 11 10 25 37 23 20 
7 22 13 23 26 8 9 4 
8 28 17 16 27 13 10 8 
9 18 13 11 28 29 19 16 
10 25 21 15 29 2 1 3 
11 26 21 15 30 3 1 5 
12 15 12 9 31 4 2 4 
13 31 22 17 32 34 19 20 
14 38 21 22 33 35 19 20 
15 14 11 9 34 24 16 15 
16 10 10 6 35 6 9 3 
17 20 13 12 36 9 10 5 
18 11 7 8 37 32 18 21 
19 12 9 8 38 33 18 21 
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The database is built with the power flows through lines 
and not with load at nodes. These variables permit to 
include in the database the most severe contingencies 
without including a dummy variable to indicate the 
contingency in fact. The number of contingencies is 
selected depending on the severity of the mean value of 
the maximum loading parameter. But in general sense, it 
is an arbitrary criterion because the criticality of a 
considered loading parameter depends on the level of 
security that the operator wants to give to the system. 
Also a great number of variables can cause loss of 
generality of the model. The technique used to reduce 
dimensions of the database is the PCA. So the physical 
space of 11 variables is reduced to a space in which the 
first five variables explained the 98% of variations in the 
database. Table 3 shows the percentage explained by each 
principal component. 
 

Table 3. Principal Component Explained Percentage 
Component No. % Explained Component No. % Explained 

1 45.5931 5 3.4812 
2 30.0451 6 1.1322 
3 13.0208 7 0.0272 
4 6.6906 8 0.0097 

 
The transformed database was divided in two parts, ¾ 
parts are put in training database and ¼ is put into a 
checking database. Fig. 2 and Fig. 3 show the matching 
between the Anfis output and original data in training 
database and checking database, using both methods. 
Anfis output follow the original data in the majority of 
cases. The biggest errors are presented in data near the 
lower and upper level of space, as a consequence of the 
absence of a lot of information in this area. Anfis output 
for checking data shows a good performance of the 
network learning process. These results show that the 
network can predict the measure security for data that are 
not in the training database. 
 

 
Fig. 2 Anfis Output and Original Training Data for CPF data 

 
Training and Checking errors distributed N~(0,0.002) and 
N~(0,0.003) for the CPF analysis and N~(0,0.05) and 

N~(0.0015,0.03), respectively. The fact that their mean is 
near to zero shows that there are not systematic errors and 
the variance reduction show that in all cases error will not 
be great for both cases. This is shown in Fig. 4 and Fig. 5. 
This is a way to validate the great reduction done to the 
size of the database, in order to achieve the speed of 
analysis, without scarifying quality of the results. 
 

 
Fig. 3 Anfis Output and Original Checking Data for QV data 

 

  
Fig. 4 Training and Checking Error Distribution.for CPF data 

 

  
Fig. 5 Training and Checking Error Distribution.for QV data 

 
The tests were made in PSAT from MATLAB® in a PC 
Intel® Core™2 Duo CPU 6750 2,66GHz, and a RAM of 
3.23GB. Table 4 shows the difference between each one 
of the methods depending on its process. The elapsed time 
for making the new database through PCA analysis is so 
fast that it is considered to be zero. Finally, the prediction 
capacity of the network is tested with load conditions that 
are not either in training and checking data. Table 5 shows 
Anfis output for different network conditions (topology 
and loading) depending on its ranking, and its 
corresponding loading parameter obtained by the CPF. 
Each of the contingencies with its respective branches can 
be seen in Table 1 and Table 2.  
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Table 4. Difference in computing time effort between methods 
Type of event in CPF Time elapsed in 

CPF (CPUs) 
Time elapsed 
in QV (CPUs) 

Database calculation 0.3750 0.3750 
Contingencies Ranking 142.9844 0.7344 
New filtered Database  102.3750 79.3281 
New filtered Database (PCA) 0 0 
Network training 4 1.6563 
Loading parameter calculation 0.0156 0.0313 

Total time 249.75 82.1250 

 
Table 5. Results for Model Validation 

Contingency LCCPF CPFD QVAD Relative  
Error CPF 

Relative 
Error QV

23 2.0841 2.2660 2.3842 8.7280 14.3995 
21 2.3263 2.3537 2.4319 1.1778 4.5394 
7 2.2550 2.2764 2.3921 0.9490 6.0798 
17 2.1074 2.2752 2.3786 7.9624 12.8689 
27 2.2913 2.2778 2.3832 -0.5892 4.0108 
16 2.1192 2.2706 2.3725 7.1442 11.9526 
22 2.3892 2.3274 2.3572 -2.5866 -1.3394 
28 2.9726 2.2790 2.4007 -23.3331 -19.2390 
18 2.6265 2.2749 2.5030 -13.3866 -4.7021 

   Mean -1.5482 3.1745
LCCPF: λ’s calculated through CPF 
CPFD: λ’s from Anfis Database through CPF 
QVAD: λ’s from Anfis Database through QV analysis Data 

 
4. Conclusion 
 
Current operation conditions of power systems near to the 
voltage security boundary make necessary the 
development of computing tools that can be used in real 
time to predict the security condition of the system. This 
paper has proposed a model to develop a tool for predict 
the loading from the operation point to the voltage 
collapse point modeling through ANFIS, using two 
methods to rank the contingencies. 
 
The use of local parameters (flow through lines) as input 
variables to find the security condition of a system make 
more efficient and precise the forecasting of a possible 
non desirable event and also includes all the network 
topology. In addition, the fact that the input variables are 
flows through lines implies that they are directly related to 
the demand, and generation in different load buses, 
resulting more suitable for the forecasting.  
 
Fuzzy logic has shown a good identification tool based on 
the system behavior data. This gives the possibility of 
having a feedback with more data for the ANFIS system. 
On the other hand, this identification tool avoids the 
complex analytic modeling with higher computing 
requirements and mathematical problems such as matrix 
singularities for each operating condition of the system. 
The security index allows the comparison between current 

operation, and other operating conditions, due to its 
normalized index. As one of the great limitations is the 
computing time taken by the contingency ranking 
selection using CPF, it is proposed another methodology 
called IBPF, which uses the QV sensitivity matrix. It is 
very noticeable that it took so much less time to present 
similar results, for which it is safe to say that the second 
method is better in those aspects. To sum up, future work 
must include the use of parallel computing technicality to 
reduce significantly the time it takes to consolidate the 
database. 
 
References 
 
[1] S. Repo, Online Voltage Stability Assesment of Power 
System (Tampere University of Technology Publications 
344, 2001). 
[2] A. Marques and G. Taranto, A Knowledge-Based 
System for Supervision and Control of Regional Voltage 
Profile and Security, IEEE Transactions on Power 
Systems, Vol. 20, No.  4, Feb. 2005. 
[3] K. Yabe, J. koda, K. Yhosida, K.H Chiang, P.S 
Khedkar, D.J Leonard, N.W Miller, Conceptual Designs 
of AI-based Systems for Local Prediction of Voltage 
Collapse, IEEE Transactions on Power Systems, Vol. 11, 
No. 1, Feb. 1996. 
[4] M. La Scala, M. Trovato, F,Torelli. A neural Network-
Based Method For Voltage Security Monitoring, 
Transactions on Power Systems, Vol. 11, No. 3, Aug. 
1996. 
[5] P. Marannino, A. Berizzi, M. Merlo and G. Demarti, 
A Rule-based Fuzzy Logic Approach for the Voltage 
Collapse Risk Classification, Power Engineering Society 
Winter Meeting, 2002. IEEE, Vol. 2, 2002. 
[6] C.W Liu, C.S Chen-Sung and M.C Su, Neuro-Fuzzy 
Networks for Voltage Security Monitoring based on 
Synchronized phasor Measurements, IEEE Transactions 
on Power Systems, Vol. 2, May 1998. 
[7] F. Milano, Power System Analysis Toolbox 
Documentation for PSAT version 1.3.4 (Jul. 2005).  
[8] IEEE Reliability Test System Task Force, The IEEE 
Reliability Test System – 1996, IEEE Transactions on 
Power Systems, Vol. 14, No. 3, Aug. 1999, 1010-1020. 
[9] T. J. Herrera, Operating prediction of Voltage Stability 
in Power Systems (in Spanish) (M.Sc. Thesis, 
Universidad de Los Andes, 2006).  
[10] K. Fukunaga, Statistical Pattern Recognition, Second 
Edition (Purdue University, 1990). 
[11] K. Morison, B. Gao, P. Kundur, Voltage Stability 
using Static and Dynamic Approaches, IEEE Trans. on 
Power Systems, Vol. 8, no. 3,., Aug. 1993, 1159-1171. 
[12] P. Kundur, Power System Stability and Control (New 
York: McGraw Hill, 1994). 
[13] B. Gao, G. K. Morison, and P. Kundur, Voltage 
Stability Evaluation Using Modal Analysis, IEEE Trans. 
on Power Systems, Vol. 7, no. 4,  Nov. 1992, 1529-1542. 
[14] A. Konar, Computational Intelligence, Principles, 
Techniques and Applications, Berlin: Springer, 2005. 

96




