
THE POWER OF REGULAR EXPRESSIONS IN THE SOFTWARE
DEVELOPMENT PROCESS

Andreas Schmidt
Department of Computer Science and Business Information Systems

University of Applied Sciences
Karlsruhe, Germany

email: andreas.schmidt@hs-karlsruhe.de

Daniel Kimmig
Institute for Applied Computer Science
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
email: daniel.kimmig@kit.edu

ABSTRACT
The tutorial will present various lightweight generators to
support software development. The input of these genera-
tors is either the source code or special textual models de-
scribing the application to be generated. The generators
are set up by means of regular expressions that extract the
relevant information from the input files.

KEY WORDS
Software generator, regular expressions, model transforma-
tion.

1 Introduction

Principle functioning of a generator is obvious from Fig-
ure 1. The input of the generator consists in the model of
the application to be generated. It may exist in the form of a
complex UML-based model description (e.g. XMI format)
or, in simple cases, of the source code or a combination of
source code and simple model description. The other major
input are transformation rules that describe what the source
code to be generated is to look like. Hence, the model de-
scription is converted into the source code by transforma-
tion rules.

The tutorial will be aimed at familiarizing the partici-
pants with the power of regular expressions and at demon-
strating their suitability for software development. After
the tutorial, the participants will be able to recognize the
potential of lightweight generators in software develop-
ment and also will be able to develop their own generators
based on regular expressions.

2 Lightweight Generators

The generators presented by the tutorial will be simple gen-
erators exclusively that often do not comprise more than a
dozen code lines. Once their functioning is understood,
a minimum expenditure is needed to create own genera-
tors for a concrete task within a few minutes only. Typical
lightweight generators are code munger, the inline code ex-
pander or the mixed code generator. These generators often
rest upon regular expressions. The input of these generators
could be a model, defined in a formal way, but could also

be existing program-code, probably annotated.

3 What Can Be Generated ?

It is the objective to partly or completely generate the
source code for an application to be implemented. The
degree of automation mostly is in the range from 20% to
80% of the application. In case of web-based applications,
a degree of automation of about 60 - 70% can be reached
frequently. Typical parts of an application that can be gen-
erated are:

• Database schemas

• Access layers for databases

• User interfaces

• Parts of the application logic

• Documentation

• Configurations (e.g. together with frameworks like
Struts, Spring, . . .)

• Tests

• Import/export modules

• . . .

4 Regular Expressions

Regular expressions are a powerful pattern language. They
allow the filtering and/or substitution of text patterns. Im-
plementations exist for many computer languages, mostly
in the form of a library, but it is also possible to integrate
them directly into the syntax of the language, like in Perl,
AWK or Ruby.

A regular expression describes a set of strings. It con-
sists of a number of literal characters (like A..Z, a..z, 0-9)
and some meta characters ([,], (,), {,}, |, ?, +, -, *, ∧, $,
\, ., \b, . . .), which have a special meaning. Additionally
there are a number of character classes, e.g. for alphanum-
meric characters ([:alfa:]1, \w2) or whitespace characters

1POSIX-Syntax
2Perl-Syntax

TUTORIAL SUMMARY

Proceedings of the IASTED International Conference

November 8 - 10, 2010 Marina Del Rey, USA
Software Engineering and Applications (SEA 2010)

312

GeneratorInput Output

Templates/
Transformation Rules

Compiler

executable

Interpreter

Figure 1. Principle functioning of a generator

Table 1. Regex - Metacharacters

Meta-Character Description
. matches everything
∧ start of pattern
$ End of pattern
| or
\b word boundary
(. . .) grouping and backreferencing (see below)
[. . .] definition of a character class

([:space:], \s). You can also define your own character
classes like [AEIOUaeiou] for vowels.

Literal characters are used like in a normal string
search, but the real power of regular expression lies in the
use of the metacharacters. If you look for a character that
has a meaning as metacharacter, you must prefix it with a
\inside your regular expression. Some of the most impor-
tant metacharacters and there meanings are shown in Ta-
ble 1.

Example3: \b(car|bike)\b.*[\.!]$ matches
the string “a bike is pure fun!” but not “a motorbike sucks.”.

4.1 Quantifier

With a quantifier, you can specify how often the token be-
fore the quantifier should be matched. You can limit the
number of occurences from zero to infinite, with or with-
out a concrete number of repetitions. Take a look at Table 2
for a overview of the differnet possible quantifiers.

To clarify the concept, let us look at two more
examples:

3Find the isolated words “car” or “bike”, and at the end of the string
there must be a period (.) or a exclamation mark (!) as last character.

Table 2. Regex - Quantifiers

Quantifier Description
* zero or more (greedy5)
+ one or more (greedy)
*? zero or more (non greedy6)
+? one or more (non greedy)
? zero or one
{3,5} three to five
{10,} ten or more
{,10} at most ten
{10} exactly ten

number4: -?\d+(\.\d+)?

IP-address: \b(\d{1,3}\.){3}\d{1,3}\b

4.2 Backreferences

If you put round brackets around a part of the expres-
sion, the content of this part is stored internal for later
use and can be accessed by referencing it with $x or\x
(x ∈ (1, 2, . . .)). So for example, to look for the match-
ing closing tag of the different header element in a HTML-
document, you can write:

<([Hh][0-6])>(.*?)</$1>
Here, $1, matches the heading element name (h1 - h6)

and in $2 you can find the content of the heading.

4.3 Perl Regular Expressions from the Command
Line

Perl [1] has a special shorthand notation, which allows the
execution of perl-code from the command line. And be-

4like -2.1456, 0.546, 42

313

 1 class Film {
 2
 3 private $title;
 4 private $year;
 5 private $director;
 6
 7 function __construct($title,
 8 $year,
 9 $director) {
10
11 $this->title = $title;
12 $this->year = $year;
13 $this->director = $director;
14 }
15 }

Figure 2. Complete class definition

cause regular expressions are valid perl code, you can write
something like this in your command line:

$ perl -pi.bak -e "s#<.*?>##g" *.xml

The result is, that in all files with the extension .xml,
the markup is removed. The original versions of the files
are stored with the extension .bak - cool stuff !

5 Simple Generator Example

In the current section a simple inline code expander gen-
erator is presented. A number of PHP classes with a con-
structor each shall be generated. Instead of generating them
manually, we define a simple extension for PHP, which cor-
responds to a short notation for classes in PHP. Instead of
defining the complete class (Figure 2), we only write in
compressed form:

<class: Film (title, year, director) >

Then, the source code file with the extended syntax
is input into the generator that executes the transformation
into a valid PHP class (Figure 2).

The question now is how the shortened syntax is
mapped onto the PHP syntax: For this purpose, an adequate
regular expression is formulated, which matches lines of
the form <class: ...> in the source code, parses them,
and splits them into their constituents. The code fragment
in Figure 3 reads the content of the passed file ($args[1]
(line 1) into an array, iterates over all these lines and
searches for the respective lines which match the regulare
expression pattern in line 2 (function preg match(. . .)— in
line 5 of the source code).

If such a line is found, the relevant parts (class name
and list of instance variables) are extracted (in variable
$m) and the transformation into the valid PHP code re-
mains to be executed only. This is done using the function
print class definition(. . .) (see Figure 4).

 1 $lines = file($argv[1]);
 2 $regex = '#<class:\s*(\w+)\s*\((.*)\)\s*>#';
 3
 4 foreach ($lines as $line) {
 5 if (preg_match($regex, $line, $m))
 6 print_class_definition($m[1], $m[2]);
 7 else
 8 print $line;
 9 }

Figure 3. Generator core

The code generated is output with the help of elemen-
tary control flow elements like loops and conditional in-
structions. For illustration, the control flow elements (in-
cluding the function definition) are represented on a dark
background, constant code parts not. All other lines of the
input file are taken over unmodified (else branch in Fig-
ure 3, line 8).

Then, the function print class definition(...) yields
the string of the class definition. In spite of its minimum
volume, the generator developed already possesses some
typical features of full-tier generators. For instance, the
extended syntax shown in Figure 2 represents a very sim-
ple model of the application to be implemented. Full-tier
generators possess a far more powerful model that is of-
ten based on UML, of course. Code generation proper,
as shown by the hard coded function in Figure 4, is often
outsourced to a separate template system in full-tier gen-
erators. It implements the generation using certain given
language elements for the control flow and allocation of
variables.

6 Steps towards a general purpose generator

What is the difference between our simple generators and
a general purpose generator engine ?

Our simple generator example in the previous sec-
tion already has a number of feature a complete multi pur-
pose generator consists of. In Figure 3 we have a min-
imal generator kernel, taken the abstract specification of
the classes (<class: Film (...)>) as input and the
function print class definition(...), written in PHP macro
style [2] could be seen as a simple template and we also
have the generated code in Figure 2 as output.

In contrast to a multipurpose generator we do not have
an internal representation of our model. We pick up the in-
put and immediately generate the output, so we do not need
another representation. But from time to time the things
become more complex. Consider the situation when you
want to generate data definition language (DDL) code a re-
lational database. Your model input could look like this:

<class Person (id Number(10), \
name String(20), \
birthday Date) >

314

<?php
 function print_class_definition($class_name, $att_list_as_str)
{
 $att_list = preg_split("#\s*,\s*#", $att_list_as_str);
?>

 class <?php echo $class_name ?> {
 <?php foreach ($att_list as $a) { ?>
 private $<?php echo $a ?>;
 <?php } ?>

 function __construct($<?php echo join(',$',$att_list) ?>) {
<?php foreach ($att_list as $a) { ?>
 $this-><?php echo $a ?> = $<?php echo $a ?>;
<?php } ?>
 }
 }

<?php } ?>

Figure 4. Function to generate the source code

<class Film (id Number(10), \
title String(20), \
year Number(4), \
director Person) >

Looks not so difficult ... but wait. When parsing the
last column of class Film, we find a reference to class Per-
son, which represents a 1 : n relationship between person
and Film. And in the relational world, a 1 : n relation is
modeled as a foreign key. But to do so, we need to know
the datatype of the primary key in the referenced table. As
a result, it is necesary to go back and read the input once
more, this time catching the information about the datatype
of the primary key field. The problem is, that we need the
information not only in sequential order, but we need parts
of the input more than once or in a different order.

But there is a more elegant solution. If we define
an internal metamodel, which has the appropriate structure
and semantic to hold all the information, we first read in
our model and when looking for the datatype of another
class we only need to call an appropriate function on the
metamodel, i.e. getPrimaryKey($class).

The internal metamodel is also the orginator for fur-
ther improvements. First of all, it is the right place to do
some verification on the input.

Additionally you can do different sorts of model-
transformation, e.g. adding some administrative attributes
to every class (createdAt, createdBy, . . .) within the same
metamodel or between different metamodels. In this case,
you will probably have another metamodel defined, which
is semantically closer to our target model (the GUI or a re-
lational database). In this case you have an additional trans-
formation step, but it could be easier to do two little trans-
formation steps instead of one big transformation step. The
MDA [3]approach from the OMG uses this concept by dis-

tinguishing between a platform independant model (PIM)
and a platform specific model (PSM).

7 Conclusions

Roughly speaking, software development may be divided
into an interesting part that is mostly given by the appli-
cation logics and a more mechanical, and hence boring,
part, including the infrastructure code necessary for the
platform, major parts of interface development, connection
of the database, error handling, etc.

As shown in the present tutorial, with little effort,
small yet efficient helpers can be developed easily. And
besides code generation, they can also be used for generat-
ing documentation or plausibility checks, cross checks and
code metrics. And in contrast to the full fledged generators
they are handy in use and could be developed or adapted to
your problems in a really short period of time.

The generation of source codes plays an important
role in my work at the Institute for Applied Computer Sci-
ence of the Karlsruhe Institute for Technology (KIT). Ma-
jor advantages of these technologies are an increased con-
sistency of the source code, a higher productivity and qual-
ity, and an increased abstraction level in development, as
abstraction is possible from many code details of the target
platform [4].

In case you are interested in this topic, it is referred to
an exciting book by Jack Herrington [4]. In his book Jack
develops a number of generators for all kind of situations.
The generators are written in Ruby, but may also be un-
derstood by ”non-Rubians”. A very good book on regular
expressions has been published by Jeff Friedl [5]. A survey
of existing generators can be found under [6].

315

References

[1] L. Wall, T. Christiansen, and J. Orwant, Programing
Perl, 3rd ed. Sebastopol: O’Reilly, 2000.

[2] R. Lerdorf, K. Tatroe, and P. MacIntyre, Programming
PHP. Sebastopol: O’Reilly, 2006.

[3] D. S. Frankel, Model Driven Architecture. Applying
MDA to Enterprise Computing. New York: John Wi-
ley & Sons, 2003.

[4] J. Herrington, Code Generation in Action. Greenwich
CT: Manning, 2003.

[5] J. E. Friedl, Mastering Regular Expressions, 2nd ed.
Sebastopol: O’Reilly, 2002.

[6] “Wikipedia - model driven engineer-
ing,” http://en.wikipedia.org/wiki/Model-
driven engineering.

316

