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Abstract

Due to its ability to deal with high-dimensional end-to-end learning
control problems, deep reinforcement learning (DRL) has received
lots of research interests in recent years. However, the existing
DRL approaches still face the challenge of data efficiency and the
online learning control performance of DRL algorithms still needs
to be improved. In this paper, we propose an online DRL approach
with convolutional encoder networks. In the proposed approach, a
cascaded learning control architecture is designed, which performs
system state extraction and dimension reduction in the first stage
and executes online reinforcement learning in the second stage. A
convolutional network is used to encode features from the raw image
data so that the algorithm can be implemented based on the encoded
low-dimensional features, which can significantly improve the learn-
ing efficiency. Experimental results on two benchmark of learning
control tasks show that the proposed approach outperforms previous
end-to-end DRL approaches, which demonstrates the effectiveness

and efficiency of the proposed approach.
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1. Introduction

As is well known, the sequential decision-making tasks are
usually formulated as Markov decision processes (MDPs)
[1, 2] which can be solved using dynamic program-
ming methods when the dynamics models are known
as a priori. However, traditional dynamic program-
ming methods can only be used to solve MDPs with
complete model information and discrete state or ac-
tion spaces. To deal with task uncertainty, reinforce-
ment learning (RL) algorithms have been widely studied
due to their ability to learn an optimal or near-optimal
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policy by interacting with the environment, and various
RL algorithms have been developed [3, 4, 5] in the past
decades.

Nowadays, there are many real-world tasks with high-
dimensional inputs or continuous spaces, and traditional
RL methods might not be suitable for such complex prob-
lems. Due to the ability of solving feature extraction
and approximation problems with high-dimensional inputs,
such as images, deep learning has been widely studied in re-
cent years and many successful applications of deep learn-
ing have been achieved. Subsequently, deep reinforcement
learning (DRL) [6] which combines deep learning with RL
was studied to solve the sequential decision-making tasks
with high-dimensional inputs.

Despite the advances that have been made in the past
decade, there are still some challenges for DRL in many
real-world applications. One is how to improve the online
data efficiency of DRL algorithms, especially when using
images as input. To improve the learning efficiency of RL, a
state encoder networks-based DRL (SEN-DRL) approach
is presented where hierarchical encoder networks are de-
signed to encode the input images into lower-dimensional
states. Based on the encoded states, a cascaded learning
control method is designed, where feature extraction and
dimension reduction are performed firstly and then the
online RL algorithms with encoded features are designed
for MDPs with discrete actions and continuous actions, re-
spectively. The hierarchical encoding network is based on
convolutional neural networks (CNNs) [7] which is trained
based on stochastic gradient descent. As raw images are
encoded into low-dimensional features, efficient online RL
algorithms can be designed using the encoded features,
which can significantly improve the data efficiency of the
learning systems.

The main contributions of this paper are summarized
as follows:

e A SEN-DRL approach is presented which performs
state extraction and dimension reduction using a
convolution-based encoding network at first, and then
executes online learning control. The proposed ap-
proach can realize fast online end-to-end learning by
mapping the raw image data into lower-dimensional
states to improve learning efficiency.



e The efficiency and effectiveness of the proposed ap-
proach are demonstrated in the learning control
tasks with discrete actions and continuous actions,
respectively. Simulation results on two benchmark
learning control tasks show that the proposed approach
outperforms pervious end-to-end DRL approaches.

The remainder of this paper is summarized as follows: we
firstly introduce the related work in Section 2. In Section
3, our approach based on cascaded encoding networks is
presented. In Section 4, experiments on two learning
control benchmarks are conducted to show the effectiveness
of our proposed method. Finally, a conclusion is drawn in
Section 5.

2. Related Work

Three categories of RL algorithms with function approx-
imation have been popularly studied in the literatures
[8, 9, 10, 11, 12, 13, 14, 15, 16]. The first category of
approximate RL methods is to approximate the value func-
tions of MDPs and generate control policies by searching
greedy actions. This category of RL methods includes Q-
learning with neural networks, state—action-reward—state—
action (SARSA) learning with function approximation,
etc. The second category directly uses a function approx-
imator to estimate the policy function of an MDPs and a
near-optimal or sub-optimal control policy can be learned
using policy gradient or other policy search methods. The
third category uses an actor-critic learning control struc-
ture which can be viewed as a combination of value func-
tion approximation and policy function learning. Many
recently developed methods belong to actor-critic-based
learning control methods. In addition, actor-critic meth-
ods have been successfully applied in various domains such
as robot control [17], power systems [18], cognitive radio
networks [19], and finance [20]. Although human experi-
ence may be used in the selection process of approximation
structures or basis functions, it is critical for an RL agent
to learn appropriate features or representation for MDPs
in a data-driven way. This problem is also called represen-
tation learning in the machine learning community [21, 22].
In the past decades, there have been various progresses
in representation learning for RL in MDPs with large or
continuous state space. In [23, 24, 25, 26], kernel meth-
ods as well as manifold learning-based methods have been
studied for value function approximation in RL. However,
it is still challenging to deal with learning control problems
with high-dimensional inputs such as raw image data.

As a class of representation learning methods with
deep network architecture, deep learning has recently been
popularly studied and various state-of-the-art results have
been obtained in pattern recognition and computer vision
domains [7, 27, 28, 29, 30, 31, 32, 33]. Similar to the hier-
archical structure of human vision systems, deep learning
models can learn multi-level features from raw image data
both in an unsupervised manner and with supervised sig-
nals. To deal with high-dimensional state space in sequen-
tial decision-making problems, deep reinforcement learning
(DRL) has received increasing research interest in recent
years.

To improve the performance of DRL algorithms, Mnih
[6] proposed a deep Q-network (DQN) algorithm to deal
with the control problem on Atari games from the pixels,
which treats the neural networks as function approxima-
tors. However, DQN may result in overoptimistic value es-
timates due to the inaccuracies or noises in value function
approximation. To solve such issue, Hasselt [34] proposed
a double estimator method (DDQN), separating the selec-
tion of the estimator and its relevant value. Based on the
deterministic policy gradient theorem, the deep determin-
istic policy gradient [35] algorithm considers the output of
the policy as the direct representation, which allows such
algorithm and its variants to deal with continuous actions.
To improve the stability of policy updates, a constraint-
based method called TRPO [36] was introduced. It adopts
the KL divergence to improve the policy update process.
Instead of KL constraints, proximal policy optimization
(PPO [37]), a variant of TRPO, considers the constraint
as an objective function of penalty or clipping. The latter
uses model-based strategies to accelerate the learning pro-
cedure. Hester [38] proposed a model-based RL algorithm
with intrinsic motivation. A prediction network (VPN) was
proposed to integrate model-free and model-based RL into
one neural network [39]. Moreover, some research focused
on developing software or hardware implementations for
improving the computational efficiency of DRL algorithms,
such as the asynchronous advantage actor-critic [40] algo-
rithm, which was designed to make use of multi-threading
of GPU.

Despite the above advances in DRL, it is still neces-
sary to improve the data efficiency of online RL algorithms
with high-dimensional inputs. To directly use the original
image to realize the navigation of mobile robots, Tai et al.
[41] constructed a feature representation model based on
CNN, which was used for DQN training after completing
pre-training, and finally achieved good results. However,
the training of CNN needs a prior control policy. In this
paper, we will consider the pre-training of CNN without
a prior control policy. With the rapid development of
deep learning and RL methods, Szoke [42] used the CNN
model with long-short-term memory to represent the state
features in the highway scene image, and a driving policy
to realize self-driving on the highway using the policy gra-
dient RL algorithm. In addition, Bae et al. [43] proposed
a multi-robot path planning algorithm using deep Q learn-
ing combined with convolution neural network to analyze
the exact situation using image information. However,
the training efficiency of the above-mentioned RL method
combined with feature coding needs to be improved, and
in this paper we propose a cascading method where the en-
coding process can be processed offline, thereby improving
the overall training efficiency.

3. Proposed Approach

Figure 1 shows the whole framework of our approach. Here,
we consider the high-dimensional images as inputs and an
encoding network based on CNNs is utilized to encode
states from the raw image firstly, then an RL method is
chosen according to different tasks, such as discrete actions
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Figure 1. Our proposed approach (SEN-DRL). Different from the traditional RL approach, the raw image is considered as
the input. The training of the encoding module is independent of the online learning control module and it can be done
offline, which can additionally improve the sample efficiency during the whole online learning process.
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Figure 2. State encoding network.

or continuous actions. Note that our approach uses the raw
image as the input, but the training of the encoding module
is independent of the online learning control module and
it can be done offline, which can additionally improve the
sample efficiency during the whole online learning process.

In the state encoding stage, the encoding module is
trained by supervised learning to encode high-dimensional
observation to low-dimensional state. Figure 2 shows the
details of the network. The encoding module contains four
basic blocks and two fully connected layers. In each basic
block, there are two convolution layers and one shortcut to
jump over the two convolution layers. Shortcuts not only
effectively avoid the degradation of deep networks but also
can reduce the impact of vanishing gradients, as there are
fewer layers to propagate through. Two fully connected
layers transform the dimension of final convolution layers
into the dimension determined by the physical state of the
task. The training data are the task-related observation-
state pairs. Moreover, it can be plugged into any RL
algorithm to encode state from high-dimensional images
and speed up the learning process. In the second stage, as
the system states are encoded by the network, we can use
RL algorithms to solve the learning control problem. As we
know, the learning control problem in RL can be modeled
as an MDP {S, A, R, P}, where S C R™ and A C R are
the state space and action space, respectively. The reward
function is denoted by R. The state transition probability
P is determined by the system dynamics which is usually
unknown or partially known for the learning controller.

According to the Bellman’s optimality principle, the
optimal cost at time ¢ is equal to

(s () = min {r(s®),u@®)+~1J"(st+1))} (1)

The optimal control at time ¢ is u* (t), which satisfies

u” (t) = arg min {77 (s ()} (2)

The critic learning is to approximate the value func-
tions. Denote sy, 4, u; as the abbreviations of s(t) ,
r(s(t),u(t)), and wu(t), respectively. Based on the Bell-
man equation for stationary control policies, the following
equation can be derived:

VT (st) = E™ [re + V7™ (5141)] (3)

where E7 [-] is with respect to the state transition proba-
bility by following a stationary action policy .

To deal with MDPs with discrete (low-dimensional)
state or action spaces, many traditional RL methods have
been proposed and SARSA [1] is a popular algorithm.
SARSA algorithm is an on-policy algorithm and it is a
typical value-based RL algorithm. The details of the
SARSA algorithm can be seen in [1, 2]. It updates the
Q function based on the action executed by the current
policy, considering one update process of Q function. Then
the Q function can be updated based on the following
equation:

Q(st,a1) +— Q(s¢,a¢)
+afripr +YQ(st41, arr1) — Q(st,a0)]  (4)

where a and v are the learning rate and the discount factor,
respectively. s; is the current state, r, + 1 and s; + 1 are
the reward and state after executing the action a;. With
discrete action space, we combine the encoding network
and SARSA to deal with the control problem in this paper
and the details of our approach (SEN-DRL) are listed in



Algorithm 1. To deal with MDPs with large (continuous)
state or action space, although the value-based and the
policy-based methods have been investigated to improve
the ability of generalization for RL algorithms, both of
them have some limitations. The actor-critic learning
control framework can be viewed as a combination of value
function approximation and policy search. In the actor-
critic learning controller, a critic network is designed to
learn the value functions of the underlying MDPs and an
actor network is used to learn near-optimal policies using
the estimated value function in the critic to perform policy
searching. Policy gradient methods often play as the actor
role in an actor-critic controller, which works by computing
an estimator of the policy gradient and plugging it into a
gradient ascent algorithm. The most frequently [1][2] used
policy gradient form in an actor is as follows:

v J(0) = Ei[Vologr (at|st) A (at, st)] (5)

where E.[.] indicates the empirical average over a finite
batch of samples, and advantage function A(a,s:) =
Q(a, s¢) — V(s¢). With sufficient samples, the expectation
of A(as,s:) can be approximated accurately. However, it
is impractical to sample too much so that the variance
of A(at,st) is large. Therefore, a value-based critic is
estimated by the temporal difference (TD) [1] algorithm.

Algorithm 1 SEN-DRL for discrete actions
1: Input: a trained deep encoder network, a stop crite-
rion.
2: Output: Q-value table.
3: Initialization:
I: perceived image that capture the MDPs state;
fi: the learning factor of the actor neural network;
t: the step in each learning episode and set t = 0.
4: repeat
5: Use the trained deep encoder network to encode the
current perceived image I; and utilize the encoded
result s; to calculate the output of the actor neural
network w;;
6: Choose the actual action a; according to policy derived
from the Q-value table(e — greedy);
7: Apply a; to the MDPs and perceive the state transition
(st, $t+1) and compute reward r; = r (s, St41);
8: Update the Q-value for the state;
9: Sett=1t+1
10: until the stop criterion is met.
11: RETURN Q-value table.

Recently, some new actor-critic algorithms have been
proposed, such as the PPO algorithm [2]. The PPO algo-
rithm has been shown to have good convergence property
and it is simple to be implemented and tuned. PPO has
become the default RL algorithm at OpenAl for its ease
of use and good performance. PPO computes an update
gradient at each step that minimizes the cost function
while ensuring the deviation from the previous policy is
relatively small. The new variant of the policy gradient is
as follows:

e ol <M’l _5’1+5> Ab,q(aels
e Z P D014 ((at]st) 0010 (at5t)
(6)

where 0,4 is the parameter of the behavioral policy, pg is
the distribution of the target policy, py,,, is the distribution
of the behavioral policy, € is the clipping coefficient. Then,
the actor network can be updated by

k
8‘]193PO (7)
agactor

Qat,St

gactor — gactor +«

The critic network is updated by
Ocritic $— Ocritic + /B(Tt+1 + 'YV(St—i-h ecm’tic)

OV (s¢, Ocritic (8)
— V(St, Gcritic))((aet—,t,t))

where o and 8 are the learning rates of actor network and
critic network, respectively.

As shown in Fig. 1, the output state is also learned
using the encoding network, but in the control stage, the
actor-critic network (such as PPO) is utilized instead.
In each step, the input image is encoded into a low-
dimensional state vector by the trained model. Then, the
critic network and actor network are updated by PPO
to estimate the value function and learn the optimized
control policy using the estimated policy gradient. For the
continuous action space, we combine the encoding network
and PPO to deal with the control problem in this paper
and the details of our approach (SEN-DRL) are listed in
Algorithm 2.

Algorithm 2 SEN-DRL for continuous actions
1: Input: a critic neural network and an actor neu-
ral network, a trained deep encoder network, a stop
criterion.
Output: network parameters.
3: Initialization:
I: perceived image that capture the MDPs state;
B: the learning factor of the actor neural network;
t: the step in each learning episode and set ¢ = 0.
4: repeat
5: Use the trained deep encoder network to encode the
current perceived image I; and utilize the encoded
result s; to calculate the output of the actor neural
network y;
6: Output the actual action a; according to the probabil-
ity distribution;
7: Apply a; to the MDPs and perceive the state transition
(8¢, 8t4+1) and compute reward 7y = 7 (S, St41);
8: Update the weights of the actor-critic neural network
with Eq.(7) and Eq.(8)
9: Sett=t+1
10: until the stop criterion is met.
11: RETURN network parameters.

N

Effectiveness analysis: In terms of the overall frame-
work, the proposed SEN-DRL algorithm still conforms to
the general paradigm of RL. The difference is that we
introduce a pre-trained SEN at the input of the RL al-
gorithm, so the performance of the policy learning is not



only determined by the subsequent RL algorithm but also
influenced by the preceding state encoding network (SEN).
Considering the prediction error of the encoding network,
the SEN-DRL algorithm can be considered as RL under
the condition that the state observations have noisy inter-
ference, i.e., the RL algorithm receives the predicted state
input as o0 = s + (, where ( can be regarded as the error
of the state prediction. Thus, the learning performance
of the algorithm will gradually become better as the noise
intensity decreases as long as the encoding network can
guarantee that the output state prediction error will de-
crease in the pre-training phase with the increase of train-
ing samples and the training times. The effectiveness of
SEN-DRL algorithm can be guaranteed by integrating the
state encoder network with state-based RL algorithms.
Sample efficiency analysis: Compared with the end-to-
end DRL algorithms, the DRL algorithm based on pre-
feature encoding splits the policy learning under the condi-
tion of high-dimensional state input into two stages: state
feature encoder learning and RL based on encoded feature.
On the one hand, through effective state encoding, the op-
timization space of the policy network will be substantially
compressed. Taking the strategy optimization process as
an example, if the state space S can be effectively reduced,
the integration space required to solve the gradient can be
significantly reduced, which will substantially reduce the
interaction with the environment. On the other hand, the
SEN is trained and designed with respect to the environ-
ment. Therefore, in the same environment, the pre-trained
state coding network will not be affected even if the task
objective changes and it can still complete the antecedent
state encoding to assist the RL process.

4. Experimental Results

We evaluate our method on two benchmarks of learning
control tasks, including the mountain-car task of discrete
actions and the pendulum task of continuous actions. Ad-
ditionally, the several typical RL/DRL methods are uti-
lized for comparison. In the simulations, only the state-
based RL methods such as SARSA, PPO (state) can ob-
tain the real states as inputs while our SEN-DRL approach
and other DRL algorithms such as DQN, DDQN, PPO
(image), use the raw images as learning inputs which are
high-dimensional. Both of the two tasks are based on the
gym environment of OpenAl, and all of the implementa-
tion/training models are evaluated on pytorch and a Nvidia
GeForce RTX 2080Ti GPU.

4.1 Mountain-Car Task

In this subsection, the image-based mountain-car task of
discrete actions is used for performance tests. As shown
in Fig. 3, the dynamical model of the mountain-car system
follows the formula below [1]

Di+At = Pt + Pt

. . 9)
De+ae = P + 0.001a — 0.0025¢0s(3py)

where a is the discrete car’s engine force and belongs to a
discrete set [—1 N, 0 N, 1 NJ, and the position and velocity

Figure 3. The mountain-car environment. The mountain-
car task is to make the car, which is placed in the valley,
drive to a preset destination (0.5 m in general) out of the
valley in minimal steps. The car’s engine is not powerful
enough so that the car has to drive up opposing sides of
the valley to accumulate enough momentum.
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Figure 4. Comparison results of learning performance with
the state-of-the-art approaches: SARSA, DQN and DDQN.
The results of mean and variance in five runs are considered
as the evaluation metrics. All of the approaches are trained
with 1 million frames, and the max step is 1,000 during
each episode.

are bounded in [—1.2 m, 0.5 m] and [—0.07 m/s, 0.07 m/s],
respectively. When the car reaches the leftmost position,
the velocity will be set to zero. In contrast, once it reaches
the rightmost position, we state that the car has achieved
the goal and the episode will be terminated. The state is a
2-D tuple [pt, pt].

The reward function is formulated as

0, ifs=sg
-1, else

where sg = 0.5 m denotes the goal state.

During the experiment, we report the results after
being trained with 1 million frames. Each episode starts at
[—0.5 m, 0 m] and ends when the car reaches the goal state
or after it takes 1,000 steps. For discrete-actions methods,
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Figure 5. Comparison results of control performance using
the policy learned in the mountain-car task under different
numbers of training samples.

we choose three baselines for comparison: (1) SARSA. The
standard SARSA considering the state as input. (2) DQN
[6]: the standard DQN considering raw image as input.
The Q network and Q-target network are represented
by a fully connected MLP with three convolution layers
and ReLU nonlinearities, respectively and (3) DDQN [34].
The standard DDQN considering raw image as input and
the parameters are default. Figure 4 shows the learning
performance among different approaches: SARSA, DQN
and DDQN. Note that five independent runs are trained
for each approach, all of the approaches are trained with 1
million frames, and the maximal step is 1,000 during each
episode, and the curves in the figure stand for the average
reward versus the step number. Note that the performance
of SARSA is considered as the upper bound of other
methods because its input is the accurate system state.
It can be seen that it takes about 0.1 million to achieve
a stable policy in our approach (SEN-DRL), indicating
that our approach is competitive with SARSA. However,
in both DQN and DDQN, the curves do not converge and
the stable policies are not obtained. Although it might
converge at some step (>1 million) in both DQN and
DDQN, there is no need to verify it because our proposed
approach has converged, which indicates that our approach
performs the best compared with DQN and DDQN.
Intuitively, the number of training data during the
state encoding process will affect the training results in
SEN-DRL; to verify the generalization performance of our
method, we evaluate the performance of SEN-DRL under
different number of labeled samples shown in Fig. 5. The d
denotes the encoding network is trained by d% proportion
of the total samples. For example, SEN-DRL (d = 20)
denotes the data are sampled as 20% proportion of the total
samples in the mountain-car system. It can be seen that
the SEN-DRL obtains better policy with the increase of the
number of training data for CNN. Moreover, we can learn
a good stable policy only using 10% of the total samples
during encoder process, which indicates the generalization
of our approach. To demonstrate the effectiveness of the
proposed SEN, we evaluate the performance of SEN with
different sparse settings over a successful trajectory with

183 timesteps in mountain-car task. The position and
velocity prediction results are shown in Fig. 6. It can be
seen that the approach with the different sample sizes can
achieve similar accurate and stable position predictions
in most states over the whole trajectory. However, for
the velocity prediction, the sample number significantly
affects, the prediction accuracy. Omnce we choose only
2% number of the samples, the result of the velocity is
the worst. Therefore, to achieve better prediction results
(especially in velocity prediction), it is important to choose
an appropriate sample size, and we find 20% might be a
good choice.

4.2 The Pendulum Task

In this subsection, the pendulum task of continuous actions
is analyzed. As shown in Fig. 7, the pendulum starts at
a random position and swings it up so it stays upright.
The dynamic model of the pendulum system is defined as
follows [44]:

. . —3g 3a .
99+<215m(977)+ml2>dt99+9dt (11)
where g = 9.8 m/s, m is the mass of the pole and m =1
kg, [ is the length of the pole and [ = 0.5 m, dt = 0.5.
The state of the pendulum is [6, 9], where 6 is the angle
between the pole and vertical direction, and 6 is the angular
velocity. 6 and 6 are bounded in [—m,7] and [—8(rad/s),
8(rad/s)], respectively. For ease of algorithm design, the
state is usually denoted as [cosf,sind,f]. The continuous
action a of the pendulum is torque of joint, which is defined
in [-2(N'-m), 2(N-m)] and the reward function can be
formulated as follows:

R = —(6% 4+ 0.16% + 0.001a?) (12)

During our experiment, we report the image-based
learning control results after being trained with 0.2 million
frames. Each episode ends when the pendulum reaches the
goal state or after it takes 200 steps, and the less force to
keep the pendulum upright longer, the larger the reward.
We compare our proposed SEN-DRL with two baselines:
(1) PPO (state), the standard PPO with low-dimensional
state as input, where the actor and critic are represented by
a fully connected MLP with two hidden layers of 64 units
and tanh nonlinearities. (2) PPO(image), the standard
PPO with high-dimensional images as input. The actor
and critic are represented by a fully connected MLP with
three convolution layers and tanh nonlinearities. The
parameters of PPO (state) and PPO (image) are similar as
[2] and the implementation is based on stable-baselines [3].
Figure 8 shows the learning performance among different
approaches: PPO (state) and PPO (image). Similar to
the mountain-car task, five independent runs are tested
for each method, all of the approaches are trained with
0.2 million frames, the maximal step is 200 during each
episode, and the curves in the figure stand for the average
reward versus the step number. Here, PPO (state) is
considered as the upper bound of other methods because
its input is the accurate state of the system. It can be
seen that it takes about 0.075 million to achieve a stable
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Figure 6. The comparison of state encoding under different number of labeled samples in the mountain-car task.

Figure 7. Pendulum system, which consists of a pole and
the goal of the task is to swing the pole up so it stays
upright.

policy in our approach (SEN-DRL), indicating that our
approach is competitive with PPO (state). However, in
PPO (image), the curve does not converge and no stable
policy is obtained. Although it might converge at some
step (>0.2 million), there is no need to verify it because
our proposed approach has converged, which indicates that
our approach performs better than PPO (image).

To verify the generalization of the number of labeled
data of SEN-DRL, we record the learning performance
of SEN-DRL under different number of labeled samples
shown in Fig. 9. The d corresponds to the CNN encoder
trained by d% samples of the standard SEN-DRL. It can be
seen that the SEN-DRL adapts to the number of training
data to some extent, but when the training data for CNN
encoder are too sparse, SEN-DRL might not learn a stable
policy.

To demonstrate the effectiveness of the proposed SEN,
we evaluate the performance of SEN with different sparse
settings over a trained policy in pendulum task. The
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Figure 8. Comparison results of learning performance with
the state-of-the-art approaches: PPO (state) and PPO
(image). The results of mean and variance in 5 runs are
considered as the evaluation metrics. All of the approaches
are trained with 0.2 million frames, and the max step is
200 during each episode. In both PPO (state) and our
methods, it takes about 0.075 million steps to achieve a
stable policy, indicating that our method is competitive
with PPO (state). However the curve does not converge
and the stable policy is not obtained in PPO (image),
which indicates that our approach outperforms the PPO
(image).

theta and angular velocity prediction results are shown in
Fig. 10. It can be seen that the approach with the different
sample sizes can achieve similarly accurate and stable theta
predictions in most states over the whole trajectory. How-
ever, in the angular velocity prediction case, the sample
number significantly affects the prediction accuracy. Once
we choose only 2% number of the samples, the result is
the worst. Therefore, to achieve better prediction results
(especially in angular velocity prediction), it is important
to choose an appropriate sample size, and we find 20%
might be a good choice.
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Figure 9. Comparison results of control performance using the policy learned in the pendulum task under different numbers

of training samples.
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Figure 10. The comparison of state encoding under different

5. Conclusions

To improve data efficiency of DRL algorithms, this paper
presents a cascaded RL approach which can realize fast
online end-to-end learning by mapping the raw image data
into lower-dimensional states to improve learning efficiency
and convergence speed. A convolution encoding network
is used to encode features from raw image data, so that
online DRL algorithms can be performed based on the
encoded low-dimensional states. Simulation results on two
benchmark of learning control tasks demonstrate that the
proposed approach is more general and efficient compared
with previous DRL methods, such as DQN, DDQN and
PPO. Further developments of the proposed cascaded RL
approach and applying it to real-world learning control
problems are our ongoing work.
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