
International Journal of Robotics and Automation, Vol. 38, No. 10, 2023
An Open Access Paper

VISUALSERVOINGINVIRTUALISED

ENVIRONMENTSBASEDONOPTICALFLOW

LEARNINGANDCONSTRAINED

OPTIMISATION

Takuya Iwasaki,∗ Solvi Arnold,∗ and Kimitoshi Yamazaki∗

Abstract

In this paper, we describe a visual servoing method for object

picking. We propose a new architecture for generating robotic

manipulator motions approaching a target object for grasping.

The architecture consists of two convolutional neural networks

(CNNs), one generating goal-directed motion and one collision

avoidance motion. The networks’ outputs are combined, along with

additional constraints, such as motion ranges of the joints, by means

of quadratic programming (QP). One issue with learning-based

approaches is that large amounts of training data are required. We

devise an operation strategy that reduces the amount of training

data required using a physics simulator. This method enables visual

servoing that is unaffected by texture and colour variation in real

environments. We show the effectiveness of the proposed method in

experiments using simple shapes as target objects.

Key Words

Visual servoing, neural network, virtual environment

1. Introduction

Bin picking is a common task in robotic manufacturing.
For instance, operations, such as product assembly and
packaging, begin with picking up the relevant parts. In such
tasks, a robot approaches a target object with its hand
from an appropriate direction, and then grasps the object.
Similar actions are also common in the tasks of household
robots. For example, when picking up an item from a table,
a robot has to reach for it while avoiding obstacles. One
major approach for accomplishing these actions is to use
motion planning. In motion planning, complete motion
sequences are generated before the robot starts to move.

∗ Shinshu University, Matsumoto, Japan; e-mail: {21w4005c,
s arnold, kyamazaki}@shinshu-u.ac.jp
Corresponding author: Kimitoshi Yamazaki

Recommended by Gian Luca Foresti
(DOI: 10.2316/J.2023.206-0810)

These are then sent to the robot for execution, upon which
the actual reaching and grasping are performed.

Another choice is visual servoing [1]–[3]. In visual
servoing, velocity command values for each joint of the
manipulator are generated on basis of the current visual
input and the visual input that the robot would see from
the goal state. The manipulator then moves on basis of
these commands. By repeating this process, it is possible
to bring the hand into a pose from which the target object
can be grasped. The advantages of visual servoing are that
the robot can start moving immediately once the tracking
target is determined, and its robustness against dynamic
environments.

The purpose of this study is to construct a visual
servoing system for generating reaching motions towards a
target object. In traditional visual servoing, manipulator
motion is determined by explicitly considering the image
Jacobian. Conversely, in the present study, we propose
an approach wherein manipulator movement is acquired
through advance learning. One issue with learning-based
approaches is that they require large amounts of training
data. In this study, we reduce the data acquisition burden
by collecting training data in a virtual environment.
Furthermore, if the shape and pose of the target object
and surrounding obstacles can be reproduced appropriately
in the virtual environment, then the virtual environment
can be used to perform visual servoing while the robot is
performing real-world reaching tasks. Using simulation in
this way, we can perform visual servoing that is unaffected
by the texture variation presented by real environments.

The main contributions of this work are as follows:
• We show an approach to performing both training and

actual visual servoing in a virtualised environment.
This enables us to reduce the load of collecting training
data by actual experiments.

• We propose a novel learning-based visual servoing
architecture, which generates appropriate joint angle
commands using two convolutional neural networks
(CNNs) and then mediate the results by quadratic
programming (QP) optimisation.

1

• We confirmed the effectiveness of the proposed method
in experiments. We show that suitable reaching
motions can be generated for a diversity of obstacle
placements, target object shapes, and target object
poses.
The structure of this paper is as follows. In the

next section, we introduce related work. In Section 3,
we present our concept and the proposed visual servoing
architecture. We explain the proposed method in Sections 4
and 5. Experimental results are reported in Section 6, and
Section 7 concludes the paper.

2. Related Work

Visual servoing has long been studied in the field of
robot vision [4]–[7]. Iwatani et al. [8] proposed a visual
servoing method that is robust to occlusion, integrating
visual tracking, and visual servo control into a vision-
based control method with occlusion handling. Chesi and
Hashimoto [9] controlled a robot such that certain feature
points were always kept in the camera image. Their
method switches back and forth between position-based
control strategies and backward motion. Bakthavatchalam
et al. [10] proposed photometric image moments as new
visual features for image-based visual servoing. Castelli
et al. [11] developed a visual servoing system for the
automation of copper wire winding. Their framework
introduced machine learning and synthesised visual
servoing using a Gaussian mixture model. Vakanski et al.
[13] proposed a framework for trajectory learning from
demonstrations. They formulated the learning problem
as a convex optimisation problem. Agravante et al.
[12] solved visual servoing as a quadratic optimisation
problem. By defining an acceleration-resolved form, they
integrate visual servoing tasks into an existing whole-
body control framework for humanoids. The method
proposed in the present paper is inspired by the idea
of Agravante’s approach. However, we formulate the QP
problem differently.

The problem of visual servoing can be divided into
two parts: (a) formalising the relation between camera
motion and visual input change and (b) controlling camera
motion on basis of this formalisation. The former problem is
usually addressed using the image Jacobian [14]. The image
Jacobian can be obtained analytically if the relationship
between local features between images can be identified
clearly. However, this approach is difficult to use in
cases where objects have few textural features. Therefore,
methods automating the extraction of suitable image
feature are also being proposed. One such method uses
neural networks. Bateux et al. [15] proposed a method
of mapping images to command values directly using a
CNN. The present work adopts this approach for obtaining
motion command candidates from image inputs. That
is, image feature points are not needed in the proposed
method. Tokuda et al. [16] presented a CNN-based visual
servoing scheme. The proposed method named DEFINet
makes it possible to do the positioning of an object even if
there is a large displacement from the desired state.

Figure 1. Concept of visual servoing [19]. In addition to
training data collection, the virtual space is used when the
robot physically performs a reaching task as well.

As a recent trend, many studies have aimed to acquire
behavioural abilities for “observe-and-grasp” scenarios
using reinforcement learning. Levine et al. [17] proposed
a method to assess the probability that an action will
succeed from a pair of images and the predicted gripping
action of the robot. In the context of reinforcement learning
in robotics, domain randomisation has been adopted to
facilitate Sim-to-real transfer [18]. In the present study
too, a simulation environment is used, but here we use
the simulated environment not just for training, but
also during real-world motion execution. This approach
makes it possible to reduce the load on training data
collection.

3. Concept and Structure of Visual Servoing

3.1 Visual Servoing Concept

We assume a task setting where a robot equipped with a
manipulator is positioned in front of a table, with a target
object to be grasped located on the table. Additionally,
there may be obstacle objects on the table as well.
The shapes of the objects are arbitrary, but should be
reasonably approximable with primitive shapes such as
rectangular cuboids or cylinders.

Assuming the abovementioned problem setting,
Kawagoshi et al. [19] proposed the concept shown in
Fig. 1. An RGBD sensor is installed so as to face the
table surface directly. The depth information obtained
from the sensor is used to estimate the approximate shape,
position, and orientation of the object to be grasped. The
scene is then virtualised in the simulator, reproducing
the robot and table setup of the actual environment. A
colour camera is attached to the wrist of the virtual robot.
The camera’s line of sight is aimed towards the tip of the
hand.

Before executing a picking task, we first prepare a
goal image as follows. Using the simulation, we capture a
colour image of the moment just before the target object is
grasped, using the virtual colour camera on the wrist of the
simulated robot. Then the grasping task starts. First, the
actual robot performs sensing, and the object arrangement

2

Figure 2. The overall structure of the proposed visual
servoing. The red squares are the newly added parts from
our previous work [19].

on the table is reproduced in the virtual space. Next, visual
servoing is performed on basis of the goal image and the
colour image captured by the virtual robot’s wrist camera
in the current state. That is, each joint of the manipulator
is controlled by visual servoing so as to approach the goal
image. Visual servoing is repeated until the goal image
and the current image have become sufficiently similar for
the robot to be able to grasp the target object by simply
closing its hand.

In the procedure described above, the actual robot
does not need to have a camera equipped on its wrist. By
using the virtual space to perform visual servoing while
the actual robot is physically performing the reaching
task, it is possible to perform visual servoing unaffected
by the textures of the surrounding physical environment.
Moreover, this approach allows for the collection of training
data to be performed in the virtual space exclusively. This
eliminates the burden of data collection on the physical
experimental setup.

In the method of [19], the presence of obstacles was
not considered. That is, there was no ability to avoid
obstacles on the trajectory of the arm that moves toward
the object. However, obstacle avoidance is often required
when reaching to an object placed on a table, for example.
Therefore, in this study, we maintain the advantage of the
previous work while extending the functionality to enable
both approaching the target object and avoiding collisions
with obstacles.

3.2 Visual Servoing Architecture

Figure 2 shows the global architecture of the proposed
visual servoing method. There are three squares with
red borders, which are new components added from our
previous study. The input data is a tuple of images,
consisting of the current image and the goal image to
be observed by the end of the reaching motion. The

current image is presented as input to a CNN tasked with
generating motions away from obstacles. We refer to this
CNN as CNNavoid below. A second CNN takes both the
current image and the goal image as input and generates
motions for bringing the wrist camera to its intended
goal pose. We refer to this CNN as CNNapproach below.
The motion output from the two CNNs is combined to
compute the actual hand displacement v́g for the present
frame.

Displacement v́g is not guaranteed to be physically
executable on the robot being used. Furthermore, if the
motion causes the target object to leave the camera view
even temporarily, it may cause visual servoing to break
down. Therefore, we adjust v́g on basis of two additional
constraints. Specifically, we apply QP with constraints to
keep the generated joint angles within the admissible range
of each joint, and to keep the target object within the
camera’s field of view at all times. The resulting motion
commands are then sent to the manipulator’s joints for
execution.

In the next section, we explain the two CNNs
architectures, and our method for deriving displacement
v́g from the networks’ outputs. In Section 5, we detail the
QP optimisation process.

4. Motion Generation Using CNNs

4.1 Generating Goal-directed Motion

CNNapproach outputs a pose change vg = (vx, vy, vz, vφ,
vθ, vψ) for the robot’s hand. The network takes two colour
images as input data. Beyond the input layer, the internal
network structure follows that of FlowNet 2.0 [20], an
architecture originally proposed for the purpose of optical
flow extraction. However, diverging from the original
architecture, we introduce a fully connected layer on the
output side with 2,048 in- and output elements. The final
network output is the six-dimensional vector vg.

Training of CNNapproach proceeds as follows. We place
a target object on the table in the virtualised environment.
We set up the camera view, and, assuming that the target
object is visible from the camera, capture an image from
a random hand pose. Then we randomly move the hand
into another pose and capture another image. We call
the former image as Image 1, and the latter as Image 2,
respectively. Repeating this procedure numerous times, we
collect data tuples of image pairs and hand motions. Then
we train the network by setting an image pair as input
and the corresponding hand motion as target output, and
updating connection weights accordingly. The loss function
for the training consists of the squared error of hand pose,
which is represented by six-dimensional vector:

loss = ‖∆x̃ −∆x̂‖2

where ∆x is the vector obtained by subtracting the hand
pose when capturing Image 1 from the hand pose when
capturing Image 2. ∆x̃ is the true value and ∆x̂ is its
predicted value obtained from CNNapproach.

3

Figure 3. Left: Conversion of an obstacle to a group of
obstacle elements. Right: A vector from the hand center
to the nth measurement point, and vectors from the hand
center to obstacle elements.

4.2 Generating Collision–Avoidance Motion

CNNavoid outputs a map of values representing collision
safety. Its input is just the current state image. Beyond
the input layer, the network structure follows CNNapproach,
except here the output layer is a vector of collision safety
values for populating the value map.

In order to train the network to produce appropriate
safety values, we need to generate ground-truth data. Here
we explain how we generate this data. We again place a
target object on the table in the virtualised environment.
Additionally, we place randomly shaped obstacle objects
at random positions on the table. Then, we approximate
the obstacles’ shapes as collections of small cubes. We
refer to these cubes as “obstacle elements” below. Figure 3
illustrates this process with a two-dimensional example.
Next, we define a unit sphere surrounding the current hand
position, and place measuring points on the surface of the
sphere at suitable intervals. We let gn denote the vector
from the hand position to the nth measuring point. We let
vom denote the vectors from the hand position to obstacle
elements, with m indexing the obstacle elements. We then
compute the evaluation value Gn for gn as follows.

Gn = max

{
gn ·

vo1
‖vo1‖

, · · · , gn ·
vom
‖vom‖

, 0

}
(1)

In other words, we calculate the cosine similarity for
gn against the vectors to all obstacle elements, select
whichever is largest from this set of similarities or 0,
and use the resulting value as the evaluation value. The
right-hand side of Fig. 3 illustrates the idea, simplified
to two dimensions. The lower the evaluation value for
a given measuring point, the lower the risk of collision
with an obstacle for movements toward that point. The
above procedure treats the hand as a point. Consequently,
when an obstacle exists particularly close to the hand,
edges of the hand may collide with it even when moving
in the direction of an evaluation point with a low Gn
value. We avoid this as follows. We add reference points
on the edges of the hand and compute additional cosine
similarities over gn and the vectors from these points to the
obstacle elements. We add the resulting values to the set
we max over in (1). Consequently, when motion towards a
measuring point would cause an edge part of the hand to

Figure 4. A snapshot of the virtualised environment.

approach an obstacle, that measuring point receives a high
evaluation value, just like when the motion would move
the centre of the hand towards an obstacle.

For the training of CNNavoid that works as describes
above, the following loss function is used.

loss =
1

N

N∑
n=1

∥∥∥G̃n − Ĝn∥∥∥2 ,
where G̃n is the true value, and Ĝn is a predicted value
obtained from CNNavoid.

4.3 Generating Motion from CNN Outputs

The routines detailed in Sections 4.1 and 4.2 above provide
us with two types of information for determining hand
motion. Here we combine these to obtain a single pose
change vector v́g. The procedure is as follows. First, from
the set of points for which evaluation valueGn as computed
in (1) falls below the threshold tg, we select the point for
which gn · vg(xyz) produces the largest value. Here vg(xyz)
refers to the position elements of the vector vg given by
CNNapproach. We call this point gmax. We then construct
pose change vector v́g as follows.

v́g =

(∣∣vg(xyz)∣∣ gmax

vg(ϕθψ)

)
(2)

Here vg(ϕθψ) refers to the orientation elements of vg.
In (2), hand rotation and the length of the translational

motion are retained from vg, whereas the direction of the
motion is replaced by gmax. As gmax corresponds to the
collision-free direction that brings us closest to the target,
defining v́g as above lets us approach the target under strict
collision avoidance conditions. This strategy was found to
be effective in the authors’ experimentation.

However, depending on the placement of obstacles, the
evaluation value of the point in the direction of the target
pose continues to fall below the predetermined threshold
value tg, and deadlock occurs. To prevent this, tg is updated
as follows for each step.

tn+1
g =

{
tng + ε, if vg(xyz) · gmax ≤ 0

tng , if vg(xyz) · gmax ≥ 0
(3)

4

Here, ε is a small positive constant and tng represents
the threshold at the nth step. In this equation, when the
target motion for each step is in the opposite direction
from the final target pose, the constraint due to obstacles is
relaxed in the next step. This increases the risk of collision
with obstacles, but in our experience, obstacles can almost
certainly be avoided by setting the initial threshold t0g
small.

5. Mediation of CNNs’ Result by QP

Optimisation

5.1 Formulation as QP Problem

The method described in the preceding section lets us
generate pose change vectors for hand motions. However,
there is no guarantee that these pose changes are physically
realisable by adjusting the manipulator’s joint angles.
Hence, it is necessary to translate these motions into
movement commands in a way that takes the robot’s
physical limitations into account. In the present work, we
consider two constraints. The first is the range of motion
of the manipulator’s joints. The second is the need to keep
the target object within the camera’s field of view at all
times. To obtain solutions that respect these restrictions,
we perform optimisation by means of QP.

QP’s basic form is as follows.

minimise fo =
1

2
xT Qx+ cTx

s.t. fc = Ax − b ≤ 0 (4)

Here Q is a real symmetric matrix, A is a matrix,
and b, c are vectors. The T on the right-hand side of (3)
indicates transposition. We derive the value for x that best
minimises the objective function.

For our proposed method, we define the objective
function as follows.

minimise fo = |v́g − v|2 (5)

Here v́g is the initially obtained per-step pose change
and v is the properly constrained pose change to be derived.
However, what we actually need are angular displacement
values for the manipulator joints, which we denote as q. We
now let J denote the Jacobian matrix, substitute v = Jq
in (5), and perform the following transformation.

minimise fo = |v́g−Jq|2 = qT JT Jq− 2v́g
TJq + v́g

T v́g (6)

The minimisation problem now amounts to deriving
the value q that minimises qTJT Jq− 2v́g

TJq in the
rightmost expression in (6). This in turn amounts to
substituting Q = JTJ and cT = x́g

TJ in (3) and solving
the resulting minimisation problem.

5.2 Constraints

To generate motions that are physically executable for a
given robot, we impose a few constraints. The first concerns
the range of motion for each of the robot’s joints. Assuming

that vectors q, give the upper and lower limits, respectively,
for all of the relevant joints, we define A and b for (4) as
follows.

A =

 I

−I

 , b =

 q

−q

 (7)

Here I is the identity matrix.
The second constraint is that the object to be grasped

should be kept within the camera’s field of view at all times.
The idea is as follows. We let et denote the coordinates
of the target object within the image at time t. To
obtain et, we should first select coordinates in the world
coordinate system corresponding to the surface or interior
of the target object. For example, consider the case where
the hand coordinates for the target pose are given by
the 3D coordinates of a point reached by lowering the
hand straight down from its current position by a given
distance. If the hand camera’s current pose and the camera
parameters are known, we can calculate the coordinates
of this point using perspective projection and coordinate
transformation. Furthermore, given coordinates et and
subsequent coordinates et+1 for time t+1, we can calculate
the displacement between the frames as follows.

et+1 = et+LJq. (8)

Here L is the image Jacobian. To ensure that et+1

stays within a given range, we use the constraint e <
et+1 < e, where e, e indicate the top-left and bottom-
right coordinates of the rectangular area.

6. Experiments

6.1 Experimental Setup

We use the open-source robot simulator Gazebo [21] to
create the virtual environment. We use HIRO (Kawada
Robotics Inc.) as our virtual robot. HIRO is a humanoid
robot with two 6-DOF manipulators, one axis for the waist
and two axes for the neck. Figure 4 shows a snapshot
of our simulation. In the present experiments, only the
left arm is used. A virtual camera was set up to provide
colour images at VGA resolution (i.e. 640 × 480 pixels).
The camera is equipped on the wrist of the left arm, and
installed so that it faces in the direction of the fingertips.

Target objects in our experiments are white with a red
cross texture added on top, as shown in Fig. 5. Obstacles
are grey. These tweaks were found to be effective for
training the visual servoing system. Both training and
operation are performed using the virtualised environment,
so the same setup can be applied. The neural networks are
implemented using tensorflow [22]. For QP optimisation,
we use the cvxopt library [23]. The main specification of
the machine used for training are as follows: CPU: Xeon
3.60GHz (Intel), GPU: Quadro p4000 (Nvidia), RAM:
64GB.

5

Figure 5. Virtually defined target objects. The cross
texture is beneficial for learning translational and
rotational camera motions.

6.2 Data Collection and Training for CNNapproach

We generate training data with two data collection
strategies. The first addresses variability of target object
positions, and proceeds as follows. We place the cuboid seen
on the left in Fig. 5 on the table. Then we aim the camera
such that the object is visible, and capture an image. Then
we randomly move the hand some distance, and capture
another image. Again, the target object should be visible.
We store the pair of images along with the camera motion
to the dataset. By repeating this procedure, we collect
20,000 examples. For camera pose selection, we define the
ranges listed below.

• Range 1. Position range: x, y, z: ±100 mm, relative
to a reference point 150 mm above the target object’s
centre. Orientation range: ϕ, θ: ±5◦, ψ: ±30◦.

• Range 2a. Position range: x, y: ±50 mm, z: ±30 mm,
relative to a reference point 80 mm above the target
object’s centre. Orientation range: ϕ, θ: ±5◦, ψ: ±10◦

• Range 2b. Position range: x, y, z: ±10 mm, relative
to a reference point 80 mm above the target object’s
centre. Orientation range: ϕ, θ, ψ: ±5◦

Here ϕ, θ, and ψ denote rotation angles around the
x-, y-, and z-axes, respectively. The x-axis extends forward
from the robot, and the z-axis points upwards. In data
collection, we (a) select both the initial and destination
pose from Range 1, moving the hand position from the
former to the latter, or (b) move the hand from a pose
in Range 2a to a pose in Range 2b. We refer to the data
collected with this method as Dataset A.

The reason for using different ranges is that the quality
of motion required for visual servoing changes as the
reaching action progresses. Sampling from Range 1 yields
data with large differences between the images. This data
allows the system to learn bold motions for when the
current image is significantly different from the target
image. Meanwhile, sampling motions from Range 2a to
Range 2b allows us to improve final positioning accuracy
when the current image closely resembles the target image.

The second data collection strategy addresses shape
variability and proceeds as follows. We prepare primitive
shapes, such as the cuboid and cylinder, shown in Fig. 5,
and randomly vary their sizes within the following ranges:
short side: 30–60 mm, long side: 40–150 mm, height: 20–60
mm. Again we place the objects on the table at random
positions. Then we capture images while performing hand
motions between poses with coordinates x, y drawn from

the range ±30 mm and z from the range ±20 mm, relative
to a reference point placed 80 mm above the object centre.
Angles ϕ, θ are drawn from ± 5◦, and ψ from ±10◦.
Then, we capture examples of small motions by sampling
positions from Range 2b. We collect a total of 20,000
examples with this collection strategy and refer to the
resulting data as Dataset B. We also perform the same
collection procedure with obstacle objects placed on the
table surface, collecting a set of 12,000 examples that we
refer to as Dataset C.

6.3 Data Collection and Training for CNNavoid

Data collection for CNNavoid randomises target object
shapes within the ranges given above in Section 6.2.
Obstacles shapes are set in the same manner as well. We
place zero to three obstacle objects on the table. Obstacle
objects are placed such that their centre coordinates are
at a horizontal distance of 70 to 120 mm from the hand
position. For each generated example, we calculate the
evaluation map introduced in Section 4.2. First, we place
180 measuring points on the sphere surface, using GSS
Generator [24] to obtain near-uniform spacing between
points. Hence, the n of Section 4 is 180 here. We convert
each obstacle object into a set of cubes (obstacle elements)
with a side length of 10 mm each. Then we calculate the
evaluation value for each point.

Using the collected images as input and the cor-
responding evaluation maps as ground truth, we train
CNNavoid. Training logic is the same as for CNNapproach,
except here we train on a single dataset for 500 epochs.
The final loss here was 0.15.

6.4 Simulation-based Experimental Results

We let CNNavoid estimate obstacle presence around the
hand. Figure 6 shows example results. Images on the left
are given to the network as input, and the graphs on
the right show the corresponding network outputs. In the
graphs on the right, differences in color intensity imply
differences in the ease of moving the hand. In the top
example, we see that it is easy to move in the direction of
pulling toward the front, while in the bottom example, we
see that the presence of the obstacle on the left side of the
image is detected correctly.

Figure 7 shows an example of successful visual
servoing in a scene with an obstacle object on the table.
The top four images show snapshots of the robot’s motions,
proceeding from panel (1) to (4) in order. We see that
the hand approached the target without colliding with
the obstacle. The bottom three images show, from left to
right, the initial image from the hand camera, the goal
image, and the image actually obtained by the end of visual
servoing. We see that even from an initial state where the
target object is only partially visible, the system was able
to generate motions that resulted in the capture of an
outcome image closely resembling the goal image. Figure 8
shows the pose transition over time for this example. The
pose stabilised in about 40 iterations. No oscillation was
observed at any time over the course of the motion.

6

Figure 6. Verification examples of obstacle detection. The value of each directional point changes according to the risk of
collision.

Figure 9 shows examples of visual servoing outcomes
for a variety of configurations of the target and obstacle
objects. The top row shows the final poses from an
onlooker’s perspective, while the bottom row shows
corresponding images captured from the hand camera.
The robot nonetheless managed to approach the target
while avoiding obstacles, and finally assume a pose nearly
identical to the pose from which the goal image was
captured. We performed a total of 40 visual servoing
sessions. Table 1 shows the mean and standard deviation
of the error for each pose variable, calculated over the
final poses obtained in these sessions. The time cost for

calculating hand motions was approximately 1.2 s per
iteration.

For comparison with the proposed method, we
implemented DEFINet proposed by Tokuda et al. [16] and
trained it on our dataset. DEFINet is a CNN-based visual
servoing scheme that makes it possible to do the positioning
of an object even if a large displacement from the desired
state, like the present study. GlobalPooling incorporated
in DEFINet learning is a process that greatly reduces the
number of variables in the NN, and is said to have the
ability to suppress overlearning. The authors of DEFINet
also claim good positioning accuracy. The results show that

7

Table 1
Quantitative Result of Visual Servoing

∆x [mm] ∆x [mm] ∆z [mm] ∆ϕ[deg] ∆θ[deg] ∆ψ[deg]

Average 1.72 3.21 2.61 1.42 0.72 0.33

Std. dev. 1.35 4.62 2.25 2.14 0.55 0.50

Norm
√

∆x2 + ∆y2 + ∆z2 = 4.5
√

∆φ2 + ∆θ2 + ∆ψ2 = 1.6

Figure 7. An example of visual servoing.

the norm of the position error is 12.4 mm and that of the
azimuth error is 3.8◦. Comparing these values to those in
the bottom row of Table 1, it can be seen that the proposed
method has more than twice the positioning accuracy.

We discuss this result. In the present study, data
is collected in a virtual environment, which provides a
sufficient amount of data with a small amount of effort
without concern for overlearning. When the amount of
data is sufficient, the positioning accuracy of our visual
servoing structure was higher than that of DEFINet. In
other words, the proposed combination of the appropriate
use of the virtual environment and the new visual
servoing structure resulted in a system that achieves high
performance.

Next, the relationship between the number of training
data and positioning accuracy was examined. In the
aforementioned experiment, 52,000 (= Dataset A: 20,000
+ Dataset B: 20,000 + Dataset C: 12,000) data were
used. While maintaining this ratio, the number of training
data was reduced and a neural network was trained.
The accuracy of the resulting hand positioning was then
evaluated. Table 2 summarises the results of calculating

Figure 8. Transition of the end-effector pose in the
experiment is shown in Fig. 7. Both position and
orientation approached the goal without vibration.

Figure 9. Examples of visual servoing. Upper panels show
the final end-effector pose and bottom panels show the
images captured at the final pose.

the norm of the error for position and orientation,
respectively.

When the number of data was 6,500, the positioning
error became so large that grasping was difficult. Therefore,
it was found that at least 10,000 training data were
necessary for the grasping task. Note that the training data
used in this experiment was collected while changing the
shape and position of the grasping target and obstacles to

8

Table 2
No. of Data versus Positioning Accuracy

No. of data 52,000 26,000 13,000 6,500

Position error [mm] 4.5 19.8 22.3 39.3

Orientation error [deg] 1.6 6.5 8.8 15.5

Figure 10. Reproduced virtual environment.

Figure 11. An example of the experimental results.

accommodate a variety of desk environments. Therefore,
collecting such training data in a real environment will be
very costly. Our framework can virtualise this part of the
process, which greatly reduces the user’s effort.

6.5 Experiment Using an Actual Robot

A target object and some obstacle objects were placed
on a table, and an actual HIRO robot was placed on the
front of the table. In this experiment, the given task is
to pick up one known object placed on the table. Before
making robot motions, the actual environment should be
reproduced in the virtual environment. For this, instance,
segmentation method, YOLACT [25], was used. First,
where and what object exists in the image was estimated,
then the 3D point cloud of a target object was obtained
by referring the depth value captured from an RGBD
camera. Next, a template point cloud that approximates
the object to a rectangular parallelepiped or sphere was
used as a reference, iterative closest point (ICP) algorithm
was applied to find approximated pose of the target
object. For other items placed on the desk, the size and
orientation were roughly estimated by principal component
analysis. They appeared in the virtual environment as a
rectangular parallelepiped. Figure 10 shows an example
environment reproduced. Figure 11 shows an experimental

Figure 12. One case of the background with rich texture.

result. We conducted a total of 20 experiments, 4 times
each, for 5 types of objects. Grasping was successful in all
experiments. Figure 12 shows an experimental example
when a tablecloth with a lot of textured is laid. The
proposed method is not affected by such textures, so
reaching and grasping were achieved without problems.

7. Conclusion

In this paper, we proposed a novel visual servoing
method for generating reaching motions towards objects
to be grasped. Manipulator movement is acquired through
learning. The proposed method uses two CNNs to obtain
the motion for goal-oriented and collision avoidance,
respectively, and then mediate the motions by QP
optimisation. We demonstrated the effectiveness of our
method in experiments using various primitive shapes.
We showed effective learning procedure which uses three
types of data. We showed that with about 52,000 training
data, hand positioning can be achieved with less than
5-mm accuracy in position, and less than 2◦ accuracy
in orientation. By combining image segmentation, shape
primitive fitting, and the proposed visual servoing, a real
robot successfully grasped an object on a table. The robot’s
motion did not fail or vibrate, even if there was rich texture
on the background. These results show that a certain
degree of stability and reliability was confirmed.

Future directions include speeding up the visual
servoing process. We also confirm that the proposed
method works even in a more complicated environment.
Furthermore, this paper presented comparative experi-
ments between the proposed method and a method with
a similar structure, but since end-to-end visual servoing
methods have been proposed in recent years [25], [26], it
is also important to compare them and summarise key
points.

References

[1] L.E. Weiss, A.C. Sanderson, and C.P. Neuman, Dynamic sensor-
based control of robots with visual feedback, IEEE Journal of
Robotics and Automation, RA-3 (5), 1987, 404–417.

[2] B. Espiau; F. Chaumette, and P. Rives, A new approach to
visual servoing in robotics, IEEE Transactions on Robotics
and Automation, 8 (3), 1992, 313–326.

[3] D. Kragic and H. Christensen, Robust visual servoing, The
International Journal of Robotics Research 22 (10–11), 2003,
923–939. doi:10.1177/027836490302210009

9

[4] F. Chaumette, and S. Hutchinson, Visual servo control. Part
I. Basic approaches, IEEE Robotics & Automation Magazine,
13 (4), 2006, 82–90.

[5] J.P. Bandera, J.A. Rodŕıguez, L. Molina-Tanco, and A.
Bandera, A survey of vision-based architectures for robot
learning by imitation, International Journal of Humanoid
Robotics, 9 (1), 2012, 1250006.

[6] S. Benhimane, and E. Malism, Homography-based 2D visual
tracking and servoing, The International Journal of Robotics
Research, 26 (7), 2007, 661–676.

[7] G. Silveira, and E. Malis, Direct visual servoing: Vision-based
estimation and control using only nonmetric information, IEEE
Transactions on Robotics, 28 (4), 2012, 974–980.

[8] Y. Iwatani, K. Watanabe, and K. Hashimoto: Visual tracking
with occlusion handling for visual servo control, Proc. of IEEE
Int’l Conf. on Robotics and Automation, Pasadena, CA, 2008,
101–106.

[9] G. Chesi, K. Hashimoto, D. Prattichizzo, and A. Vicino,
Keeping features in the field of view in eye-in-hand visual
servoing: A switching approach, IEEE Trans. on Robotics,
20 (5), 2004, 908–913.

[10] M. Bakthavatchalam, F. Chaumette, and E. Marchand,
Photometric moments: New promising candidates for visual
servoing, Proc. IEEE Int. Conf. on Robotics and Automa-
tion, Karlsruhe, 2013, 5241–5246, doi: 10.1109/ICRA.2013.
6631326.

[11] F. Castelli, S. Michieletto, S. Ghidoni, and E. Pagello. A
machine learning-based visual servoing approach for fast robot
control in industrial setting, International Journal of Advanced
Robotic Systems, 14 (6), 2017. doi:10.1177/1729881417738884

[12] D.J. Agravante, G. Claudio, F. Spindler, and F.
Chaumette, Visual servoing in an optimization framework
for the whole-body control of humanoid robots, IEEE
Robotics and Automation Letters, 2 (2), 2017, 608–615,
doi: 10.1109/LRA.2016.2645512.

[13] A. Vakanski, F. Janabi-Sharifi, and I. Mantegh, An image-based
trajectory planning approach for robust robot programming by
demonstration, Robotics and Autonomous Systems, 98, 2017,
241–257.

[14] F. Chaumette, and S. Hutchinson, Visual servo control, Part
I: Basic approaches, IEEE Robotics & Automation Magazine,
vol. 13, no. 4, pp. 82–90, Dec. 2006.

[15] Q. Bateux, E. Marchand, J. Leitner, F. Chaumette, and P.
Corke, Training deep neural networks for visual servoing, Proc.
of IEEE Int. Conf. on Robotics and Automation, Brisbane,
QLD, 2018, pp. 3307–3314.

[16] F. Tokuda, S. Arai, and K. Kosuge: Convolutional
neural network-based visual servoing for eye-to-hand
manipulator, IEEE Access, 9, 2021, 91820–91835, doi:
10.1109/ACCESS.2021.3091737.

[17] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, Learning
hand-eye coordination for robotic grasping with deep learning
and large-scale data collection, The International Journal of
Robotics Research, 37 (4–5), 2018, 421–436.

[18] S. Iqbal, J. Tremblay, T. To, J. Cheng, E. Leitch, A.
Campbell, K. Leung, D. McKay, and S. Birchfield, Toward
sim-to-real directional semantic grasping, 2019, arXiv preprint
arXiv:1909.02075.

[19] T. Kawagoshi, S. Arnold, and K. Yamazaki, Visual servoing
using virtual space for both learning and task execution, Proc.
of the 2021 IEEE/SICE International Symposium on System
Integration, Fukushima, 2021, 292–297.

[20] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazırbas,
V. Golkov, P. van der Smagt, D. Cremers, and T. Brox,
Flownet: Learning optical flow with convolutional networks,
Proc. IEEE International Conf. on Computer Vision, Santiago,
2015, 2758–2766.

[21] Gazebo: http://gazebosim.org/Point Cloud Library,
https://pointclouds.org (accessed Nov. 14, 2022).

[22] Tensorflow, https://www.tensorflow.org/ (accessed Nov. 14,
2022).

[23] CVXOPT, https://cvxopt.org/ (accessed Nov. 14, 2022).

[24] A. Yamaji, GSS generator: A software to distribute many
points with equal intervals on an unit sphere, Geoinformatics,
12 (1), 2001, 3–12.

[25] D. Bolya, C. Zhou, F. Xiao, and Y.J. Lee: YOLACT: Real-Time
Instance Segmentation, IEEE/CVF International Conference
on Computer Vision, 2019, 9156–9165.

[26] P. Katara, Y.V.S Harish, H. Pandya, A. Gupta, A. Mehdi
Sanchawala, G. Kumar, B. Bhowmick, and K. Madhava
Krishna, DeepMPCVS: Deep model predictive control for
visual servoing, Proc. 4th Annual Conf. on Robot Learning,
Cambridge, MA,, 2020, 1–10.

[27] E. Godinho Ribeiro, R. de Queiroz Mendes, and V. Grassi,
Real-time deep learning approach to visual servo control and
grasp detection for autonomous robotic manipulation, Robotics
and Autonomous Systems, 139, 2021, 103757.

Biographies

Takuya Iwasaki graduated from
the Department of Mechanical
Systems Engineering, Faculty of
Engineering, Shinshu University in
2021. He is currently a member
of the Interdisciplinary Graduate
School of Science and Technol-
ogy, Department of Engineering,
Mechanical Systems Engineering
Division, Shinshu University.

Solvi Arnold obtained the Ph.D.
degree from the University of
Nagoya in 2015. She was a JSPS
Research Fellow from 2013 to
2015. In 2015, she joined Shinshu
University, where she is currently
a Project Associate Professor. Her
research interests include artificial
intelligence, intelligent robotics,
and representation learning. She is
a member of the Robotics Society
of Japan.

Kimitoshi Yamazaki received the
B.E., M.E., and Ph.D. degrees
from the University of Tsukuba in
2002, 2004, and 2007, respectively.
From 2006 to 2007, he was a JSPS
Research Fellow. From 2007 to
2012, he was a Project Assistant
Professor with the University of
Tokyo. From 2010 to 2014, he was
also a Researcher of PRESTO,
JST. He joined Shinshu University
in 2012, where he is currently a

Professor. His research interests are in robot vision and
motion planning. He is a member of RSJ, SICE, JSME, and
IEEE.

10

	VISUAL SERVOING IN VIRTUALISED ENVIRONMENTS BASED ON OPTICAL FLOW LEARNING AND CONSTRAINED OPTIMISATION
	Takuya Iwasaki,, Solvi Arnold,, and Kimitoshi Yamazaki
	1 Introduction
	2 Related Work
	3 Concept and Structure of Visual Servoing
	3.1 Visual Servoing Concept
	3.2 Visual Servoing Architecture

	4 Motion Generation Using CNNs
	4.1 Generating Goal-directed Motion
	4.2 Generating Collision–Avoidance Motion
	4.3 Generating Motion from CNN Outputs

	5 Mediation of CNNs' Result by QP
	5.1 Formulation as QP Problem
	5.2 Constraints

	6 Experiments
	6.1 Experimental Setup
	6.2 Data Collection and Training for CNNapproach
	6.3 Data Collection and Training for CNNavoid
	6.4 Simulation-based Experimental Results
	6.5 Experiment Using an Actual Robot

	7 Conclusion

