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AN IDENTIFICATION METHOD FOR

VOLTAGE SAG IN DISTRIBUTION SYSTEMS

USING SVM WITH GREY WOLF ALGORITHM
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Abstract

For the voltage sag caused by short-circuit fault, transformer

switching and induction motor starting in distribution network, an

optimised support vector machine (SVM) method based on Grey

Wolf algorithm (GWO) is proposed for voltage sag identification.

The empirical mode decomposition method is used to analyse the

voltage sag signal, obtain an inherent mode function set (IMFs), and

calculate the energy entropy of each order IMF as the eigenvector.

In order to solve the problem that the traditional SVM is easy to fall

into local optimisation in the process of optimisation, a method of

optimising the penalty factor and kernel function parameters of SVM

through GWO is proposed, a GWO-SVM classifier is constructed,

and then the extracted feature vector is input into the GWO-SVM

classifier to train and recognise the samples, so as to realise the

automatic classification and identification of different types of voltage

sag sources. The simulation results show the effectiveness of the

extracted feature vector and GWO-SVM classifier. Compared with

other five traditional methods, it is verified that it has fast speed

and high precision.
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1. Introduction

In recent years, with the continuous increase of modern
power electronic equipment and sensitive load in China, the
industrial process of precision instrument manufacturing
has higher and higher requirements for power quality.
Fast and accurate identification of voltage sag source is
conducive to the prevention and treatment of voltage sag
and ensure power quality [1]. In real life, the occurrence
of voltage sag is inevitable and its harm is huge. More
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than 70% of power quality problems in power system
are caused by voltage sag [2]. In order to prevent
and effectively control voltage sag, how to quickly and
accurately judge the possible type of voltage sag source is
the key.

For the identification of voltage sag disturbance
sources, most traditional methods use the characteristics
and data of different voltage sag sources and adopt the
manual identification method, which has the advantages of
simplicity, convenience, efficiency, and intuition, but it is
not conducive to the identification of large sample machines
[3], [4]. Some studies have proposed an S-transform
to analyse the change of voltage sag signal amplitude,
extract six transformed characteristic indexes, use the
multifractal spectrum parameter generalised Hurst index
to improve the accuracy of classification and identification
in the noise environment, input the extracted characteristic
indexes into the support vector machine (SVM), and train
various voltage sag source types, So as to realise the
classification and identification of different voltage sag
sources, but the time window of S-transform is fixed,
which is difficult to be applied in practical engineering
[5]. Other scholars use adaptive S-transform to analyse
the sag signal, construct S-transform modulus matrix,
decompose the sag signal into different time-frequency
subspaces, extract six feature quantities and input them
into the SVM optimised by particle swarm optimisation for
classification. However, only three voltage sag sources are
mentioned in this work, so this method is not universal and
applicable [6].

In some studies, BP neural network is used as the
basic classifier, which has the disadvantages of poor
recognition effect of single classifier and strong pertinence
of sample selection. AdaBoost ensemble learning algorithm
is introduced to integrate several basic classifier BP neural
networks into strong classifier BP AdaBoost network to
accurately identify the type of voltage sag source, However,
in the process of solving, BP neural network requires high
training samples and long training time, which is easy to
fall into local optimisation [7]. Some other studies extract
the time-domain features of voltage sag signals, extract the
two time-domain features of energy entropy and singular
entropy by S-transform, and construct the 42 dimensional
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recognition feature vector, so as to realise the identification
of voltage sag sources. Because the new algorithm of
limit learning machine of single hidden layer feedforward
neural network is used in calculation. There will be defects
of huge amount of calculation and long calculation time
[8]. Considering the disadvantages of long classification
time and low accuracy of traditional voltage sag source
identification methods, some scholars propose a method to
extract the characteristic quantities, such as voltage sag
start and end time, sag degree and phase jump by using the
modular time-frequency matrix of generalised S-transform,
and then use the genetic algorithm to optimise the input
weight and hidden layer threshold of elm to construct a GA-
ELM classifier. Then the voltage sag source is effectively
identified [9].

In view of the possibility of misjudgement caused by
manually obtaining characteristics, some scholars propose
a voltage sag source identification method based on
deep learning model fusion, which obtains the temporal
and spatial characteristics of voltage sag signal through
convolution neural network in deep learning algorithm.
The deep confidence network is used to replace the
full connection layer used to purify high-dimensional
features and act as a classifier in the convolutional neural
network, so as to enhance the multi-label classification
ability of the network and improve the accuracy of
voltage sag source identification [10]; In order to overcome
the difficulty of feature extraction, some scholars first
use the waveform variation characteristics of voltage
sag RMS, use coarse-grained RMS data to construct
the population corresponding to short-circuit fault,
large capacity induction motor startup and transformer
switching, use training samples for learning, and use
Markov distance to construct discriminant function and
criteria. The input test samples are judged to realise the
identification of voltage sag source, but this method is only
suitable for a single voltage sag source with small samples,
which has great limitations for practical engineering
application [11].

Based on the previous research on SVM classification
[6], [12]–[15], aiming at the problem that the traditional
SVM is easy to fall into local optimisation in the
optimisation process, this paper proposes a method to
optimise the penalty factor and kernel function parameters
of SVM through gray wolf algorithm (GWO), and
construct GWO–SVM classifier, Then the extracted feature
vector is input into GWO–SVM classifier to train and
identify the samples, so as to realise the automatic
classification and identification of different types of voltage
sag sources.

2. SVM classifier optimised by GWO

2.1 SVM classifier

Let the sample data (xi, yi), 1 ≤ x ≤ n, x ∈ Rd and
y ∈ {−1, 1} be classification labels. By constructing the
classification hyperplane wTx+ b = 0and the classification
function g(x) = wTx+b, the classification interval between
the two types of samples is maximised. λ = y

(
wTx+ b

)
is

defined as the functional interval between the eigenvector
and the hyperplane. In order to construct the optimal
classification hyperplane, the geometric distance between
the data points and the hyperplane is defined as:

λ =
y
(
wTx+ b

)
‖w‖

(1)

When the samples are classified and identified, the
larger the geometric interval between the two types of
samples, the more conducive to classification. Assuming
that all samples meet |g (x)| =

∣∣wTx+ b
∣∣ ≥ 1, the

geometric interval between the two types of samples is
2/ ‖w‖, which can maximise the function interval between
the two types of samples, that is, find the minimum value of
‖w‖2/2. Therefore, constructing the optimal classification
hyperplane problem satisfying the maximum geometric
interval is equivalent to solving the optimal solution of the
following constrained optimisation problem:min ‖w‖

2

2

s.t. yi
(
wTxi + b

)
≥ 1, i = 1, 2, . . . , n

(2)

In order to solve the convex optimisation problem of
the above formula, an augmented Lagrange function is
constructed:

L (w, b, δ) =
‖w‖2

2
−

n∑
i=1

δi
[
yi
(
wTxi + b

)
− 1
]

(3)

To minimise L for w and b, find the partial derivatives
of w and b, respectively, and make them equal to 0 to
obtain: w =

∑n
i=1 δiyixi∑n

i=1 δiyi = 0
(4)

The Lagrange function can be obtained by substituting
it into the above formula, which contains only one variable:

L (w, b, δ) =

n∑
i=1

δi −
1

2

n∑
i,j=1

δiδjyiyjx
T
i xj (5)

Finding the maximum of δ becomes the problem of
optimising the dual variable δ, which is obtained from the
above formula:

maxδ
∑n
i=1 δi −

1
2

∑n
i,j=1 δiδjyiyjx

T
i xj

s.t. δi ≥ 0, i = 1, 2, . . . , n∑n
i=1 δijyi = 0

(6)

If δ′ is the optimal solution, then:

f (x) = sign

[
n∑
i=1

δ′iyi (xi, x) + b′

]
(7)

where δ′ is the classification threshold.
In order to avoid too high dimension in the mapping

process, the kernel function is used to replace the inner
product, and the high-dimensional mapping process of
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eigenvector is changed from explicit to implicit, so that
the inner product can be calculated in the original
space, which is the kernel function method. Thus, the
vector classification function of the optimal feature index
becomes:

f (x) = sign

[
n∑
i=1

δ′iyiK (xi, x) + b′

]
(8)

Some eigenvectors are disturbed by noise, and there
will be outliers when they are mapped to high-dimensional
space. Therefore, relaxation variable ηiand penalty factor
Qare usually introduced to deal with outliers. The objective
function becomes:ϕ (w, η) = min ‖w‖

2

2 +Q

(
n∑
i=1

ηi

)
s.t. yi

(
wTxi + b

)
≥ 1− ηi, i = 1, 2, . . . , n

(9)

In general, the identification of voltage sag disturbance
sources usually needs to classify many classes. Therefore,
it is necessary to construct multi-level SVM and
realise multi-level two classification through topology
recognition framework, so as to multi-classify voltage
sag sources. Because the extracted multi-dimensional
voltage sag feature is usually linear and inseparable,
by mapping the feature vector to the high-dimensional
space, the various feature vectors of the voltage sag
source can be linearly distinguished, and the voltage
sag source can be distinguished by mapping them to
the higher-dimensional feature space by using the kernel
function. The kernel function uses an implicit mapping
method to ensure that the inner product is carried out
in the original space, so that this nonlinear expansion
does not increase much computation. Kernel function can
choose different parameters according to different practical
problems and data, which is equivalent to constructing
different kernel functions to meet different classification
requirements.

In this paper, the commonly used radial basis kernel
function is selected as the mapping function, and its
expression is as follows:

K (xi, x) = exp(−γ||xi − x||2) (10)

2.2 Classifier Optimisation of SVM

Because the final classification result of SVM is largely
affected by the penalty factor and the parameters in the
kernel function, the GWO is used to optimise these two
parameters in this paper, so as to improve the accuracy of
classification and recognition.

When using SVM to deal with linear nonseparable
problems, the setting of its parameters usually directly
affects the classification performance of SVM. There are
two kinds of parameters that have a great impact on the
classification effect of SVM. One is the penalty factor and
the other is the parameter in the kernel function. In this
paper, the GWO will be used to optimise the selection
of these two parameters. By optimising the value of the

parameters, the flexibility of the kernel function mapping
process and the recognition accuracy will be improved.

The GWO is used to optimise the parameters of SVM.
The steps of the algorithm are as follows:
1. The voltage sag signal is decomposed by empirical

mode decomposition (EMD) to obtain an inherent
mode function set (IMFs), and then the energy entropy
of each order IMF is calculated as the feature vector
to construct the feature data set.

2. Establish the training set and test set.
3. Initialise the gray wolf number N , solution set

dimension D, maximum iteration number t, gray
wolf population S = (S1, S2, . . . , SN ) and gray wolf
individual position Si = (si1, si2, . . . , siD) in the gray
wolf population, where i ∈ {1, 2, 3, . . . , N}.

4. Traverse the gray wolf population, calculate the fitness
value fi of each individual, and record the positions of
the top three gray wolf individuals as Sα, Sβ and Sλ
in turn.

5. Calculate the distance between each wolf ξ and α, β
and λwolves, respectively, according to the following
formula: 

Dα = |C1Sα(t)− S(t)|

Dβ = |C2Sβ(t)− S(t)|

Dλ = |C3Sλ(t)− S(t)|

(11)

where Dα, Dβ and Dλare the distances between α,
β and λ wolves and individuals of other wolves,
respectively, and update the location of α, β, and
λ wolves and prey according to the following two
formulas: 

S1 = Sα(t)−K1Dα

S2 = Sβ(t)−K2Dβ

S3 = Sλ(t)−K3Dλ

(12)

Sp(t+ 1) =
S1 + S2 + S3

3
(13)

where Sp(t+1) represents the location of prey (optimal
solution).

6. Update the values of parameters a, K, and Q in the
algorithm.

7. Judge whether the maximum number of iterations
t is reached. If so, retain the optimal combination
optimisation solution Sα, otherwise return to step 4).

8. The GWO optimized SVM classifier can be obtained
from the above steps.

3. Voltage Sag Signal Characteristics and
Decomposition

Using EMD method, the voltage sag signal is decom-
posed to obtain a series of intrinsic mode functions
IMF. The IMF component must meet the following
conditions:
1) At any time point, the average value of the envelope

formed by the local maximum point and the envelope
formed by the local minimum point is 0;
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2) The number of extreme points and the number of zero
crossings are the same or differ by 1 at most. Any signal
satisfying the above conditions can be decomposed into
a finite sum of IMF components.
After EMD of various voltage sag waveforms, each
IMF component meets the above two constraints.
The EMD process of voltage sag signal is as follows:

1) Find out all extreme points of the voltage sag signal
f(t), and use spline function to fit the upper and lower
envelope n1(t)of voltage sag signal, respectively; The
mean value of the upper and lower envelope is obtained,
and the mean envelope is obtained. The signal f(t) is
subtracted from the mean value n1(t)to obtain a new
time series q1(t):

q1(t) = f(t)− n1(t) (14)

If q1(t) meets the above two conditions of IMF, q1(t)
is the first-order IMF component of voltage sag signal
f(t).

2) Generally, the time series cannot be a stable data
series q1(t), so the above decomposition steps should
be repeated. Repeat the above process i times until the
obtained mean envelope approaches 0. The first IMF
component obtained is recorded as x1(t), and x1(t)
is also the highest frequency component obtained by
EMD.

q1i(t) = q1(i−1)(t)− n1i(t) (15)

q1i(t) = x1(t) (16)

3) The high-frequency component x1(t) is separated from
the voltage sag signal f(t) to obtain a new time
series w1(t) = f(t) − x1(t). Taking w1(t) as a new
time series, repeat the above operations to obtain
x1(t), x2(t), x3(t), . . . , xn(t), respectively.w2(t) = w1(t)− x2(t)

wn(t) = wn−1(t)− xn(t)
(17)

When wn(t) is a monotone function, the decomposition
process terminates. At this time, the voltage sag signal can
be expressed by the following formula:

f(t) =

n∑
k=1

xi(t) + wn(t) (18)

where: x1(t), x2(t), x3(t), . . . , xn(t) is a series of IMFs
obtained by the decomposition of voltage sag signal BB,
representing the frequency components of voltage sag
signal in different frequency bands, changing from high
frequency to low frequency, accurately highlighting the
local characteristics of the signal. wn(t) is a residual
function, representing the change trend of voltage sag
signal.

4. Feature Extraction Method for Voltage Sag

When voltage sag occurs in power system, the energy of
voltage sag signal caused by each voltage sag source will
change with different frequency distribution. After EMD
decomposition, the voltage sag signal can be decomposed

into a series of stable IMF components. After calculating
the energy entropy of each order IMF component, a group
of EMD energy entropy representing the voltage sag signal
can be obtained, which can truly reflect the characteristics
of the voltage sag signal. The characteristics of the original
signal f(t) can be described by these IMF energy entropy
values, so the energy entropy of the IMF component can
be extracted to construct the characteristic vector of the
voltage sag signal [8].

In this paper, “one against rest” LIBSVM is
used to identify the voltage sag source [15]. In this
paper, test sample M1 is the data from single-phase
grounding short-circuit fault, M2 is the data from
two-phase short-circuit fault, M3 is the data from
three-phase short-circuit fault, M4 is the data from the
operation of transformer, and M5 is the data from the
start-up of induction motor. For the voltage sag formed
by M1 ∼ M5, five two classifiers of SVM are constructed,
which are divided into SVM1 ∼ SVM5. During sample
training, the nth sample in the nth bi-classifier is +1 and
the rest is−1. In the sample test, the eigenvector of the test
data sample is first input into SVM1. If the data of the test
sample is 0, it will output +1. It can be judged that the
disturbance source of voltage sag is single-phase grounding
short-circuit fault, and the test is completed. Otherwise,
the feature data is automatically input into SVM2, and so
on until SVM5. Using this work, five typical voltage sag
sources can be effectively identified.

The steps of voltage sag source identification based on
EMD-SVM are as follows:
1) All kinds of voltage sag signals of three phases A, B,

and C are decomposed by EMD to obtain each IMF
signal.

2) After EMD decomposition, n IMF components are
obtained, which is W1,W2,W3, . . . ,Wn, respectively.
The energy value of each IMF component is calculated
to obtain the energy distribution characteristics of
voltage sag signal in frequency domain, namely,
E = {E1, E2, E3, . . . , En}. Ignoring the influence of
residual quantity, the calculated energy distribution
obeys the law of energy conservation.

3) Calculate the energy of each IMF signal according to
the following formula:

Ei =

n∑
k=1

|f(t)|2, (i = 1, 2, . . . , n) (19)

4) Calculate the total energy of each IMF signal:

Eall = (

n∑
k=1

|Ei|2)1/2, (i = 1, 2, . . . , n) (20)

5) Normalisation of each IMF signal energy:

E = [E1/Eall, E2/Eall, . . . , En/Eall] (21)

6) Calculate the energy entropy of each IMF and
construct the eigenvector:

H = −
n∑
i=1

pilog(pi) (22)

where pi = Ei/Eall.
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Figure 1. The EMD decomposition diagram of phase A
voltage.

7) The feature vector constructed by the calculated
energy entropy of each order IMF is input into the
GWO–SVM classifier to train and test the samples.

5. Studying Cases

5.1 Data Acquisition

Based on MATLAB//Simulink, the simulation models of
five common voltage sag sources, such as single-phase
grounding short-circuit fault, two-phase short-circuit fault,
three-phase short-circuit fault, transformer operation, and
induction motor start-up are built and tested.

The sample data of different voltage sag sources can
be obtained in the following ways:

1) For short-circuit fault, change the time of short-circuit
fault and the size of line load;

2) For the operation of the transformer, change the
connection mode of the primary and secondary
windings of the transformer, the capacity of the
transformer, the operation time of the transformer,
and the size of the line load;

3) For the starting of induction motor, change the
capacity of induction motor, the type of motor, and
the starting time of motor.

Through the above simulation methods, 50 groups of
sample data of each of the five typical voltage sag types can
be obtained, of which 20 groups of each voltage sag type are
used as the training samples of GWO–SVM classifier and
the other 30 groups of data are used as the test samples.

5.2 EMD Decomposition and Eigenvalue of IMF
Signal

(1) IMF eigenvalue of single-phase grounding short-
circuit fault
The EMD decomposition diagram of phase a voltage
in single-phase grounding short-circuit fault is shown in
Fig. 1. As can be seen from Fig. 1, the original signal
can be decomposed into four single component IMF and
one residual function by the EMD method. The residual
function represents the change trend of the signal rather
than the component of the signal. As shown in Fig. 2,

Figure 2. Energy entropy of A-phase due to single-phase
grounding in single-phase grounding short-circuit fault
short-circuit fault.

Figure 3. The EMD decomposition diagram of phases A
and B voltage in two-phase grounding short-circuit fault:
(a) Phase A and (b) Phase B.

Figure 4. IMF eigenvalue of phases A and B due to
two-phase grounding short-circuit fault: (a) phase A and
(b) phase B.

IMF eigenvalue of phase A due to single-phase grounding
short-circuit fault shows that the energy entropy contained
in IMF3 is the highest, followed by IMF1, and then to
IMF4, at least IMF2. These characteristics can be different
from other voltage sag sources.

(2) IMF eigenvalue of two-phase short circuit fault
The EMD decomposition diagrams of phase A voltage and
phase B voltage in two-phase short-circuit fault are shown
in Fig. 3.

It can be seen from Figs. 3 and 4 that the original
signal can be decomposed into four single component IMF
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Figure 5. The EMD decomposition diagram of phase A and B voltage in three-phase grounding short-circuit fault: (a) phase A;
(b) phase B; and (c) phase C.

Figure 6. IMF eigenvalue of phase A and B due to three-phase grounding short-circuit fault: (a) phase A; (b) phase B; and
(c) phase C.

and one residual function, which represents the change
trend of the signal rather than the component of the signal.
In two-phase short-circuit fault, the energy entropy of each
order IMF of phase A and phase B is shown in Fig. 4.
Among the energy entropy values of each order IMF of
phase A, the energy entropy contained in IMF2 is the
highest, followed by IMF3, and then to IMF1, at least
IMF4; Among the energy entropy values of each order IMF
of phase B, the energy entropy contained in IMF1 and
IMF3 is almost high, followed by IMF2, at least IMF4.
These characteristics can be different from other voltage
sag sources.

(3) IMF eigenvalue of three-phase short circuit fault
The EMD decomposition diagram of phase A, B, and
C voltage in three-phase short circuit fault is shown
in Fig. 5.

As can be seen from Fig. 5, the original signal can
be decomposed into four single component IMF and one
residual function by the EMD method. In three-phase
short-circuit fault, there is obvious difference in the energy
entropy of each order IMF of phase A, phase B and phase
C, as shown in Fig. 6: in the energy entropy value of each
order IMF of phase A, the energy entropy contained in
IMF1 and IMF3 is almost high, followed by IMF4, at least
IMF2; Among the energy entropy values of each order of

IMF in phase B, the energy entropy contained in IMF1
and IMF2 is almost high, followed by IMF4, at least IMF3;
Among the energy entropy values of each order of IMF
in phase C, the energy entropy contained in IMF2 is the
highest, followed by IMF1, and IMF3 and IMF4 are almost
high.

(4) IMF eigenvalue of transformer switching
The EMD decomposition diagram of phase A, phase B and
phase C voltage during transformer switching operation is
shown in Fig. 7. As can be seen from Fig. 7, the original
signal can be decomposed into four single-component IMF
and one residual function by EMD method. The residual
function represents the change trend of the signal. The
energy entropy of each order of IMF of phase A, phase
B and phase C voltage is different, and the difference is
very obvious, as shown in Fig. 8. In Fig. 8, among the
energy entropy values of each order of IMF in phase A,
the energy entropy contained in IMF1, IMF2 and IMF4
is almost high, at least IMF3; Among the energy entropy
values of each order of IMF in phase B, the energy entropy
contained in IMF1, IMF2 and IMF4 is almost high, at least
IMF3; Among the energy entropy values of each order of
IMF in phase C, the energy entropy contained in IMF3 is
the highest, followed by IMF2, and then to IMF4, at least
IMF1.
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Figure 7. The EMD decomposition diagram of phase A and B voltage during transformer switching operation: (a) phase A,
(b) phase B, and (c) phase C.

Figure 8. IMF eigenvalue of phase A and B due to transformer switching operation: (a) phase A, (b) phase B; and (c) phase C.

Figure 9. The EMD decomposition diagram of phase A and B voltage in induction motor start: (a) phase A, (b) phase B;
and (c) phase C.

(5) IMF eigenvalue of induction motor start
The EMD decomposition diagram of phase A, phase B and
phase C voltage during induction motor startup is shown

in Fig. 9. It can be seen from Fig. 9 that the original
signal can be decomposed into four single-component IMF
and one residual function by EMD method. The residual
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Figure 10. IMF eigenvalue of phase A and B due to induction motor start: (a) phase A, (b) phase B; and (c) phase C.

Figure 11. Voltage sag source identification based on
GWO-SVM.

function represents the change trend of the signal, and the
energy entropy of each order IMF of phase A, phase B
and phase C is obviously different, as shown in Fig. 10.
Among the energy entropy values of each order of IMF
in phase A, the energy entropy contained in IMF2 is the
highest, followed by IMF1, and then to IMF4, at least
IMF3; Among the energy entropy values of each order of
IMF in phase B, the energy entropy contained in IMF2
is the highest, followed by IMF1, and the energy entropy
contained in IMF4 and IMF3 are very few; Among the
energy entropy values of each order of IMF in phase C,
the energy entropy contained in IMF1 and IMF3 is almost
high, followed by IMF4, at least IMF2.

5.3 Voltage Sag Source Identification

In this paper, EMD is used to decompose the signal to
obtain a series of intrinsic mode functions IMF, and then
the energy entropy of IMF is calculated and normalized.
The GWO is used to optimise the penalty factor Q of SVM
and the parameters in the kernel function. The optimal
value results are shown in Table 1.

Based on the classification and identification of
five different voltage sag sources: single-phase grounding
short circuit, two-phase short circuit, three-phase short
circuit, induction motor startup and transformer switching

Table 1
Optimal Parameter Selection of SVM Based on GWO

Classifier Penalty
Factor Q

Kernel Function
Parametersγ

GWO-SVM 3.06444 0.920618

Table 2
Recognition Accuracy Based on GWO-SVM Classifier

Voltage Sag
Type

Test Sample
Size

Correct
Identification

Quantity

Correct
Identification

Rate

Single phase
to ground
short circuit

30 30 100%

Two phase
short circuit

30 30 100%

Three phase
short circuit

30 30 100%

Transformer
operation

30 29 96.67%

Induction
motor start

30 30 100%

operation, the classification and identification accuracy
results of test samples are shown in Table 2 and Fig. 11,
respectively.

It can be seen from Table 2 and Figs. 2 and 1 that
the correct identification rate of single-phase grounding
short-circuit fault, two-phase short-circuit, three-phase
short-circuit and induction motor startup has reached
100%, while there is only one identification error when the
transformer is put into operation, and the correct rate is
about 97%.

In order to verify the superiority of the recognition
accuracy of extracting the energy entropy of voltage sag
signal IMF based on EMD and then inputting it into
GWO-SVM classifier, a comparative study is set up under
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Table 3
Recognition Accuracy of Six Different Classifiers

Classifier Test Sample Size Correct Identification Quantity Correct Recognition Rate Identification time/s

SVM 150 139 92.67% 13.616

PSO-SVM 150 136 90.67% 10.882

IPSO-SVM 150 143 95.33% 5.6736

GSA-SVM 150 143 95.33% 2.6125

ABC-SVM 150 145 96.67% 9.9596

GWO-SVM 150 149 99.33% 2.3679

the condition of ensuring that the training sample size and
test sample size are the same. It is compared with SVM,
particle swarm optimisation SVM (PSO-SVM), improved
particle swarm optimisation SVM (ipso-SVM) The gravity
search algorithm optimised SVM (GSA-SVM) and artificial
bee colony algorithm optimised SVM (ABC-SVM) are
compared, as shown in Table 3.

It can be seen from the data in Table 3 that
the accuracy of GWO-SVM classifier in identifying a
single voltage sag source is higher than that of the
other five common traditional classifiers. GWO-SVM
classifier has efficient recognition ability. The GWO is
used to optimise the penalty factor Q of SVM and
the parameters in the kernel function to construct
GWO-SVM classifier. Compared with other traditional five
classifiers, GWO-SVM classifier can effectively improve
the recognition accuracy of different voltage sag sources,
and the recognition time is less than the traditional five
classifiers. Therefore, in terms of recognition accuracy
and recognition speed, GWO-SVM classifier has more
general applicability, can meet the needs of quickly
identifying voltage sag sources, and has very important
reference value and significance for solving practical process
problems.

6. Conclusions

In this paper, the causes of voltage sag caused by
short-circuit fault, transformer switching and induction
motor starting in distribution network are analysed in
detail. In order to quickly judge the type of voltage
sag source that may occur, a voltage sag source
identification method based on EMD energy entropy and
GWO-SVM classifier is proposed. The method is verified
by simulation data, and the following conclusions can
be drawn:

In order to accurately identify the voltage sag source,
the energy entropy is extracted as the feature vector of the
voltage sag signal, and a good identification accuracy is
obtained.

Using GWO to optimise SVM can effectively avoid
falling into local optimisation in the optimisation process
of traditional SVM, improve the recognition accuracy from
92.67% to 99.33%, and shorten the time from 13.616 s to
2.3679 s, which greatly improves the accuracy and rapidity
of voltage sag source identification.

Compared with SVM, PSO-SVM, ipso-SVM, gsa-
SVM, and abc-SVM, GWO-SVM classifier has the highest
recognition accuracy, reaching 99.33%, faster speed and
the least time. It can quickly and accurately identify five
common voltage sag source types in only 2.3679 s.

The voltage sag source identification method based
on GWO optimised SVM mentioned in this paper can
quickly and accurately identify the types of voltage sag,
which provides a new idea for solving practical engineering
problems. Its theory is simple and has strong practicability.
It is a very effective voltage sag source identification
method, it helps to improve the economy and reliability of
the whole power system.
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