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Abstract

Wind power forecasting (WPF) has important practical value for

grid-connected systems. To address the difficulty of predicting wind

power, an improved particle swarm optimisation (IPSO) algorithm

for gated recurrent unit (GRU) power forecasting was proposed.

Firstly, to deal with problems, such as the instability and large

fluctuations of wind power data, the variational mode decomposition

(VMD) algorithm was applied to preprocess historical wind power

data. Then, a GRU neural network model was established, and

the Bat algorithm (BA) and IPSO were used in the PSO process

to obtain the hyperparameters of the GRU neural network, to

determine the parameters of the forecasting model. Finally, the

new VMD-BAIPSO-GRU neural network wind power algorithm was

proposed to divide the VMD decomposed data into training and

testing sets, and the model was then trained and tested. Compared

with other similar algorithms, the VMD-BAIPSO-GRU algorithm

has a lowers root mean square error (RMSE) of 0.37 and mean

absolute percentage error (MAPE) of 12.09%, indicating higher

forecasting accuracy.
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1. Introduction

The instability and unsafe of wind power cause the
fluctuation of wind power output, resulting in unstable
power generation [1]. This is because wind power is affected
by many factors, such as wind speed, meteorological
conditions, and equipment status. If the grid is unable to
accurately predict wind power generation, it can lead to
an imbalance between supply and demand on the grid,
triggering voltage instability, frequency bias, or even a
breakdown of the power system. Through accurate wind
power forecasting (WPF) the grid operation strategy
can be adjusted accordingly. So in order to realise the
economical and safe of the power grid, accurate, and rapid
forecasting of wind power is required [2]–[5].

In the early stages, WPF technology used wind speed
from numerical weather forecasting (NWF) as input for
forecasting. However, the forecasting accuracy depended
solely on the accuracy of NWP, and the impact of terrain
and weather conditions in areas where the terrain was
complex and the climate was changeable led to significant
errors in NWF, resulting in large forecasting errors.

Models based on time series, such as those developed
by reference [6]–[8], have alleviated the issue of decreasing
WPF accuracy over time. Reference [9] used artificial
neural networks to establish forecasting models that
improve the information exchange capabilities between
forecasting units and, consequently, increase single fore-
casting accuracy. References [10], [11] established forecast-
ing models based on the Kalman filtering method that
showed some efficacy in handling noise in wind power data.
However, predicting wind power is challenging because it
is influenced by numerous factors, such as time, space,
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and wind turbine conditions. Furthermore, wind turbine
factors have many subordinate factors [12], which makes it
difficult to consider all factors in one model. As a result,
current WPF models predominantly emphasise improving
individual factors to enhance forecasting accuracy, and
there remains a need for research to identify and establish
comprehensive forecasting models that integrate multiple
factors to improve overall forecasting accuracy.

At present, WPF consists of four predominant research
domains: forecasting time scale, forecasting spatial scale,
forecasting object, and forecasting model. In the realm of
forecasting time scale, researchers have proposed a system
of classification, as suggested by reference [13], which
arranges WPF into four distinct time increments: long-
term forecasting, medium-term forecasting, short-term
forecasting, and ultra-short-term forecasting. In the arena
of forecasting spatial scale, reference [14] has proffered
four specific modes of forecasting: single turbine power
forecasting, wind farm power forecasting, single wind field
power forecasting, and wind power cluster power forecast-
ing. Regarding the forecasting object domain, reference [15]
has advocated an approach in which researchers conduct
indirect forecasting of wind speed and indirect forecasting.
Finally, the domain of forecasting models can be divided
into several different categories, including the physical
forecasting model elucidated in references [16], [17],
the statistical learning forecasting model described in
references [18], [19], and the nascent development of the
combination forecasting model in the last decade. Based
on contextual constraints, a combination model has been
chosen to coordinate ultra-short-term forecasting for a
single turbine. Reference [20] designs a new ultra-short-
term forecasting method considering some characteristics
of the field group, act as the unit state, the wind turbine
wake flow. But unfortunately, it loses the change of
power series or wind speed series. Reference [21] proposes
a new dynamic combination forecasting model of the
new observation information and self-adaptive index on
accounted of the weight ratio of historical wind data. The
new model reduce the error of forecasting to a certain
extent.

Recent years have seen research that demonstrates
the efficacy of fusing multiple forecasting models, thus
combining their respective benefits to enhance WPF
accuracy. Some machine learning algorithms have strong
effectiveness in power forecasting [22]. Reference [23]
proposes a new forecasting model based on LSTM, which
uses correlation in time series for long-term, and solve some
long term learning problems of classical neural networks.
Reference [24] proposes a hybrid wavelet LSTM model for
fault forecasting in electrical power grids that has a higher
predictive capacity. Deal with short-term wind and solar
power forecasting. Reference [25] designs a new COA-CNN-
LSTM model to deal with short-term WPF. Reference [26]
proposes a new LSTM neural networks forecasting model
combining the optimised Cuckoo search algorithm (CSA).
Reference [27] uses a Sparrow search algorithm (SSA)
to determine number of neurons and the learning rate
in LSTM and CNN-LSTM networks. However, intelligent
optimisation algorithms, such as PSO algorithm, Cuckoo

algorithm, and Bat algorithm (BA), is often difficult to
obtain global optimal solutions and need to set niche
parameters for solving problems.

Wind power data is characterised by fluctuations and
non-stationarity. The accuracy of predicting oscillation
points is insufficient. Constructing a hybrid prediction
model can achieve better results. A new combination
forecasting algorithm is designed here, which integrates
variational mode decomposition (VMD), Bat algorithm
improved particle swarm optimisation (BAIPSO) and
gated recurrent unit (GRU) neural network model (VMD-
BAIPSO-GRU). Firstly, the VMD is used to decompose
the power data into a series of relatively stable sub-
signals, highlighting the local feature information of the
data. Then, a GRU neural network model is established,
and the BA is introduced to improve the PSO process
and optimise the hyper parameters of the GRU. The
new combination forecasting model demonstrates higher
forecasting accuracy in comparison to other algorithms
of similar nature with the data of 23rd turbine at the
Dabangling Power Plant of Harbin Electric Corporation
Wind Power Co., Ltd. The proposed algorithm is
particularly effective when forecasting the real wind power
output of a single turbine.

The paper Section 1 introduces the preprocessing of
wind power, and Section 2 presents the principles of
VMD, BAIPSO, and GRU, as well as the configuration
of the combination model. Finally, Section 3 validates
the effectiveness of the new VMD-BAIPSO-GRU model.
Finally, summarise the entire paper.

2. Preprocessing of Wind Power Data

Due to equipment failures and other factors, the original
dataset often contains exceptions and missing values. The
method employed for missing wind power data is nearest
neighbour interpolation. Additionally, the missing value
is replaced with the value that is closest to the mean
of the attribute column by comparing the preceding and
succeeding data points.

The Isolation Forest algorithm is used for detecting
power anomalies. The power data used is from the 23rd
turbine at the Dabangling Power Plant of Harbin Electric
Corporation Wind Power Co., Ltd. The mean of the
consecutive two observed values is used for correction, and
the resulting outliers are shown in Fig. 1.

The method used for wind power data transformation
is minimum–maximum normalisation.

P = (p− pmin) / (pmax − pmin) (1)

where, p = the power at the current time; pmin = the
minimum value of wind power; pmax = the maximum value
of power, and P = the normalised power result.

After data normalisation, it is necessary to restore
it to the original data. The standardisation function for
minimum and maximum normalisation is shown in (2).

ppre = p′pre (pmax − pmin) + pmin (2)
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Figure 1. Outliers of wind power data.

where ppre = the restored WPF value; p′pre = the
unprocessed WPF value.

3. Components of the Combination Model

3.1 Improved Variational Mode Decomposition
(IVMD)

In 2014, the VMD algorithm was proposed [28] VMD
transforms the original wind data into a number of intrinsic
mode function (IMF). It can solve the optimal solution and
the variational problem with its central frequency of each
IMF. The operational steps of VMD are as follows.

3.1.1 Establish the Variational Problem

(1) To calculate the marginal spectrum of each mode
function uk(t) by the Hilbert transform and obtain a
one-sided frequency spectrum:[

δ(t) +
j

πt

]
∗ uk(t) (3)

(2) Mix the exponential terms corresponding to the central
frequency ωk of each mode function to condition the
frequency spectrum of the mode function into the
fundamental modulation band:[[

δ(t) +
j

πt

]
∗ uk(t)

]
e−jωkt (4)

(3) Find the bandwidth corresponding to each mode
component and transform the target problem into a
variational one with constraints:

min{ukwk}

{ ∑
k‖ δt

[(
j
πt + δ(t)

)
uk(t)

]
e−jwkt

∥∥2}
s.t.
∑
k uk = f

(5)

In above (5), {uk} = {u1, . . . , uk} represents the
decomposed mode component, and {wk} = {w1, . . . , wk}
is the central frequency of the mode function.

3.1.2 Solve the Variational Problem

(1) Use the Lagrange multiplier operator λ to transform
(5) into an unconstrained variational problem. The

expression is as follows:

L ({uk} , {wk} , λ)

= α
∑
k

∥∥∥∥∂t [uk(t)

(
j

πt
+ δ(t)

)]
e−jwkt

∥∥∥∥2

+

∥∥∥∥∥f (t)−
∑
k

uk(t)

∥∥∥∥∥
2

2

+

〈
λ (t) , f (t)−

∑
k

uk(t)

〉
(6)

(2) Take the solution of the previous minimisation problem
in (5) as the solution of the augmented Lagrange
expression (6). By putting to use the alternating
direction multiplier method, update uN+1

k , wN+1
k , and

λN+1 iteratively. The updating of the mode uk becomes
an equivalent minimisation problem:

ûN+1
k = argmin

ûk,uk∈X

α
∥∥∥∥∥∥
∥∥∥∥∥f̂(w)−

∑
i

ûi(w) +
λ̂(w)

2

∥∥∥∥∥
2

2

+jw [(sgn(w + wk))ûk(w + wk) + 1]

∥∥∥∥∥∥
2

2

(7)

Replacing w with w − wk in the above equation, the
non-negative frequency interval integration form becomes:

ûN+1
k = argmin

ûk,uk∈X


∫ ∞
0

4α |ûk(w)|2 (w − wk)2

+2

∣∣∣∣∣f (w) +
λ̂(w)

2
−
∑
i

ûi(w)

∣∣∣∣∣
2

dw

 (8)

The solution to this is:

ûN+1
k (w) =

f̂(w)−
∑
i ûi(w) + λ̂(w)

2

1 + 2α(w − wk)2
(9)

The central frequency wk does not appear in the
reconstructed function fidelity term but only in the
previous bandwidth term. The equivalent minimisation
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Figure 2. Trend chart of residual correlation coefficient of
VMD.

expression for wk is:

wN+1
k = argmin

wk

{∥∥∥∥∂t [(δ(t) +
j

πt
∗ uk(t)

)]
e−jwkt

∥∥∥∥2
2

}
(10)

The central frequency:

wN+1
k = argmin

wk

{∫ ∞
0

‖ûk(w)‖2 (w − wk)
2

dw

}
(11)

The updated expression for the central frequency is
obtained as follows:

wN+1
k =

∫∞
0
w |ûk(w)|2 dw∫∞

0
|ûk(w)|2 dw

(12)

where, ûN+1
k (w) is the Wiener filtering of the remaining

components at the current stage; wN+1
k is the centroid of

the power spectrum at the current stage; The real part of
ûk(w) is {uk(t)} by inverse Fourier transform.

To ensure sufficient decomposition of the wind power
sequence, the number of modes K can be determined by
the Pearson coefficient Rk between the residuals obtained
by VMD decomposition and the wind power sequence.

For VMD decomposition of historical power generation
data, the residual correlation coefficients for different
numbers of modes K are shown in Fig. 2, where the
horizontal axis K represents the number of decomposition
modes, and the vertical axis R represents the abbreviation
for the residual correlation coefficient RK . When K < 9,
the RK shows a decreasing trend as a whole, indicating
insufficient decomposition of the power time series. When
K > 9, theRK starts to rise, indicating over-decomposition
of the wind power time series. The value of K is determined
to be 9.

3.2 Bat Algorithm Improved Particle Swarm
Optimisation (BAIPSO)

3.2.1 IPSO Optimisation Algorithm

Eberhart and Kennedy proposed PSO algorithm in 1995,
which was based stochastic optimisation technique. The
PSO algorithm mimics the swarm behaviour of herds of
animals, insects, fish, and birds. The groups search for food
in a cooperative manner, and each member in the group
continuously changes its search mode by learning its own
experience and the experiences of other members.

To improve the global search ability of the PSO
algorithm in the early stages of iteration and the
local search ability in the later stages, a nonlinearly
decreasing inertia weight is introduced for improvement,
as follows [29]:

w = wmin + (wmax − wmin)× 2exp

(
−α

(
tmax

t

)4
)

(13)

where, α is the constant coefficient; t is the current number;
tmax is the maximum one.

3.2.2 Bat Algorithm Improved Particle Swarm
Optimisation (BAIPSO)

The principle of the BA is to consider each individual in
the population of bats as a feasible solution in space, and
to view the process of bats searching for prey and flying
behaviour as a process of random search and optimisation.
The fitness function to be solved is considered as a criterion
for judging the feasibility of the bat in space, and the
algorithm’s retention or elimination of feasible solutions
corresponds to the laws of natural selection of individual
bats in competitive survival.

Set the flight speed of each bat at position Xi to Vi,
the emission frequency of the pulse to fi, the loudness of
the pulse to Ai, and the emissivity of the pulse to ri, η is a
random number in [0,1], fmax and fmin are the maximum
frequency and the minimum frequency, respectively:

V t+1
id = wiV

t
id + fi(Pbest −Xt

nd)

+c2r2(Gbest −Xt
nd) (14)

Xt+1
id = fiX

t
id + V t+1

id (15)

fi = fmin + η(fmax − fmin) (16)

Assuming [30]: 1) each bat uses echolocation for
localisation analysis, and can also accurately identify
obstacles through flight; 2) when approaching prey, bats
emit pulse sound waves and adjust themselves; 3) the
main way to adjust the volume of sound waves is to
gradually adjust from the maximum volume Amax to the
minimum volume Amin, based on these three assumptions
and using some approximations for simplification, the steps
of BAIPSO can be summarised as follows:
(1) Initialise parameters, determine the objective function,

set the iteration times of the algorithm, the population
size of the bats, the positionX0

i , velocity V 0
i , and pulse

emission frequency of each bat r0i (i = 1, 2, . . . , n).
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(2) Calculate the fitness value, find the bat individual with
the best position in the population, and update the
position and velocity.

(3) Generate a random number rand1 within the range
of [0, 1]. If rand1 > rti , select the best bat individual
and generate a local solution near the current best
individual. Otherwise, go to step (2).

(4) Generate a random number rand2 within the range
of [0, 1]. If rand2 < Ati, and the fitness value of the
objective function at the time is better than the local
solution found in step (3), then accept the new solution.

(5) Update the global best solution, determine whether
the maximum iteration times have been reached, if the
maximum iteration times have been reached, output
the global best solution, otherwise go to step (2).
During the operation of BAIPSO algorithm, each

particle is able to use echolocation to accurately identify its
own position. As a result, all particles are able to complete
the replacement of their positional information within
the particle swarm, and record the optimal positional
information. This facilitates the precise determination of a
particle’s position as it arrives at a new location, thereby
enhancing its local search ability.

3.3 GRU Recurrent Neural Network

LSTM is a special type of RNN. By using a gating
mechanism, it solves the problem of gradient vanishing and
avoids the long-range dependency problem when dealing
with long-term sequences. The GRU is a variant of LSTM
proposed by Cho et al. in 2014. Structurally, GRU has the
same input and output structures as a regular recurrent
neural network. Each unit receives the current raw input
value and the output value from the previous unit, and
after internal processing, the output information vector
serves as the input value for the next neural unit. The
difference lies in the optimisation of the gate apparatus
based on LSTM, which simplifies the internal processing of
the neural unit.

In LSTM, forget gate, output gate and input gate,
control memory, output, and input. The GRU model
simplifies the structure with only two gating structures:
update gate and reset gate. The update gate can be used to
control the size of information from the previous moment
entering the current moment. For the update gate, the
larger the value, the more information from the previous
moment will be saved. The reset gate controls how much
information will be included in the current candidate set at
the previous time. For the reset gate the smaller the value,
the less information will be included in the previous time.

3.4 The Steps of VMD-BAIPSO-GRU Forecasting
Model

The paper proposes a new VMD-BAIPSO-GRU forecasting
model. The steps of VMD-BAIPSO-GRU model:
(1) Step one of the model: The raw power time series

data is cleaned by completing missing values and
removing outliers. The data is then normalised using

MinMaxscale method to improve data quality and
model convergence speed.

(2) Step two of the model: The wind power time series
data is decomposed using VMD, resulting in K
modalities with different central frequencies. The
VMD decomposed sub-sequences are then divided into
training sets and testing sets.

(3) Step three of the model: The BAIPSO-GRU model
parameters are initialised and optimised using training
data. The optimal parameters obtained through
BAIPSO optimisation are then assigned to the GRU
neural network. The optimised GRU is then used to
train and forecast all sub-datasets. The forecastings
of all sub-datasets are then reconstructed and reverse-
normalised to obtain the final forecasting values.

(4) Step four of the model: The forecasting performance
is evaluated using the MAE, MAPE, and RMSE
coefficients, using the following formulas:

MSE =
1

n

n∑
i=1

(yi − ŷ)i
2

(17)

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ (18)

RMSE =

√√√√ 1

n

n∑
t=1

(yt − y′t)2 (19)

where n is the number, the forecasting value is
ŷ = {ŷ1, ŷ2, ŷ3, . . . , ŷn} and the test value is y =
{y1, y2, y3, . . . , yn}.

4. Validation of Combination Model

By using VMD to decompose wind power data, the
instability and nonlinearity of the data can be reduced.
GRU has advantages in time series prediction, especially
in power prediction. The use of IPSO can improve
convergence speed and accuracy but it is prone to getting
trapped in local optima and cannot find the global optimal
solution. The BA, with its resistance to interference and
high computational rate, can be used to improve the
efficiency of GRU parameter optimisation and find the
global optimal parameters.

4.1 Analysis of VMD Decomposition Results

The historical wind power data was decomposed using
VMD into nine sub-sequences with different frequencies,
and the nine IMF components obtained from VMD are
shown in Fig. 3.

It can be observed that the average amplitude of sub-
sequence IMF1 is relatively large and changes smoothly.
Sub-sequences IMF 2-IMF 4 exhibit good regularity and
significant periodicity. Sub-sequences IMF 5-IMF 9 exhibit
large fluctuations in amplitude, but still exhibit obvious
regularity and periodicity. This suggests that the choice
of K = 9 for the number of sub-sequences obtained from
VMD decomposition is ideal.
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Figure 3. VMD decomposition vectors IMF 1–IMF 9.

4.2 BAIPSO Algorithm Testing

To test the effect of the algorithm, six test functions were
used and the BAIPSO algorithm was compared with the
basic PSO. The results of algorithm operation are shown
in Table 1:

The test functions include single peak functions
f1 ∼ f3, which are relatively simple, and multi peak
functions f4 ∼ f6, which are relatively complex. Except
for the function f3, the optimal position for all other
test functions is [0]n, and the optimal value for all six
test functions is 0. This indicates that as long as the
optimal position is reached, the function will converge to
0. The parameters for both BAIPSO and original PSO

algorithms were set as follows: population size of m = 30,
maximum iteration number of 1,000, and learning factor
c1 = c2 = 1.98.

Both algorithms were tested with a dimension of D =
10 and D = 20 using the test functions for 20 iterations.
The optimisation statistics are shown in Table 2. Through
the data we can compare and analyse the performance of
the BAIPSO and the original PSO.

It can be seen from Table 2 that the result of the
BAIPSO algorithm is relatively poor when optimising the
function f3, but it also converges near the optimal value,
and the optimisation accuracy is better than the accuracy
of original PSO algorithm. The BAIPSO algorithm has
higher accuracy than the original PSO algorithm for all
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Table 1
The Results of Two Algorithms Operation

Test functions Function name Value range Optimal value position Theoretical value

f1 Phere [−100,100]n [0]n 0

f2 Schwefel2 [−10,10]n [0]n 0

f3 Rosenbrock [−30,30]n [0]n 0

f4 Griewank [−600,600]n [0]n 0

f5 Ackley [−32,32]n [0]n 0

f6 Rastrigin [−5.12,5.12]n [0]n 0

Table 2
Results Comparison

Functions Dimension PSO BAIPSO

第1章 第1章 Mean value Standard deviation Mean value Standard deviation

f1 10 3.19E+001 7.72E-0002 5.22E-006 1.43E-006

20 1.37E+001 5.21E-002 3.27E-007 1.19E-007

f2 10 1.54E-001 2.27E-002 4.63E-015 1.28E-012

20 1.36E-001 2.11E-002 3.63E-015 2.48E-014

f3 10 3.68E+002 4.68E+001 8.91E+000 3.21E+000

20 2.49E+001 2.35E+001 1.35E+000 6.41E+001

f4 10 2.90E+002 6.51E+001 1.47E-013 3.71E-013

20 1.39E+002 5.14E+001 2.81E-015 4.32E-015

f5 10 4.48E-001 6.27E-001 3.68E-009 1.67E-009

20 2.83E-001 2.36E-001 2.65E-011 1.88E-011

f6 10 3.68E-001 2.50E-001 1.32E-013 1.61E-013

20 5.74E-001 3.89E-001 2.54E-015 6.28E-015

test functions, and also has higher accuracy in terms of
function optimisation.

In conclusion, the BAIPSO algorithm has a stronger
search ability, faster speed, higher precision than the
original PSO algorithm.

4.3 Testing of VMD-BAIPSO-GRU Wind Power
Forecasting Model

The testing was conducted with a sampling time
interval of 10 min, for a total of 200 points after
preprocessing. The first 160 points were selected as the
training set for the forecasting model, while the last
40 points were used as the test set for forecasting, with a
forecasting time window of 20 min.

The evaluation metrics for each model are shown in
Table 3. It can be observed from the Fig. 4 that both the
BA-GRU and IPSO-GRU models can predict the general
trend of wind power, but their accuracy is not very good.
However, after decomposing the original data with VMD,

Table 3
Evaluation Indicators for Each Forecasting Model

Models MAE MAPE RMSE

BA-GRU 0.52 34.53% 0.72

IPSO-GRU 0.73 42.69% 0.97

BAIPSO-GRU 0.44 22.73% 0.64

VMD-BAIPSO-GRU 0.37 12.09% 0.22

the forecasting accuracy improved and is closer to the
actual values. In the last little figure, the forecasting values
are closer to the true values.

It can be seen from Table 3 that the new VMD-
BAIPSO-GRU combination WPF model has the closest
forecasting results to the actual values, with lower error
indicators than the other models. The MAE of new
forecasting model is 0.37 smaller than MAEs of other

7



Figure 4. The forecasting and testing values of the model.

forecasting 0.52, 0.73, 0.44, 0.37, MAPE is 12.09% smaller
than MAPEs of other forecasting 34.53%, 42.69%, 22.73%,
and RMSE is 0.22 smaller than other forecasting models
RMSE of 0.72, 0.97, 0.64.

In summary, the combination of BA and IPSO
algorithm greatly improves the optimisation performance
of the origin WPF algorithm, and is not easily trapped
in a local optimal solution. Compared to the other three
modes this new model has obvious advantages. From the
forecasting results, the new VMD-BAIPSO-GRU is a well-
performing model.

5. Conclusion

In this study, it proposed an IPSO algorithm for GRU
WPF. Several analyses and tests were conducted. Firstly,
forecasting analysis was carried out on each component
of the VMD decomposition with the optimal K -value.
Secondly, tests and comparisons were conducted on the
BAIPSO algorithm, and its optimisation performance was
verified by comparing its convergence effect with that of
the original PSO algorithm by six test functions. Finally,
the performance of the VMD-BAIPSO-GRU forecasting
algorithm was compared and analysed with three other
forecasting algorithms, to verify its feasibility. The VMD-
BAIPSO-GRU algorithm has a lower error and higher
forecasting accuracy.
(1) The VMD decomposition can accurately explore

hidden characteristics in wind power data. The

forecasting model has better forecasting performance
compared with BAIPSO-GRU, which proves the
effectiveness of original wind power data based on
VMD decomposition processing.

(2) The VMD-BAIPSO-GRU forecasting model is based
on the GRU forecasting, and the BAIPSO algorithm
is added for optimising hyperparameter to get the
smallest error. By comparing the forecasting results
of the other three modes, it is proved that the
forecasting accuracy of VMD-BAIPSO-GRU is better
than BAIPSO-GRU. It does verify the validity of hyper
parameter optimisation based on BAIPSO.

(3) By further in-depth and objective comparison analysis
of the scientific and rational effects of the VMD-
BAIPSO-GRU forecasting model and the BAIPSO-
GRU forecasting model, combined with the previous
findings, it can get the conclusion that the new
forecasting model presented in the paper has the best
forecasting results with highest forecasting accuracy.
The MAE of forecasting results was reduced to 0.37,
MAPE decreased to 12.09%, and RMSE decreased
to 0.22.
Currently, the forecasting accuracy of this model is

greatly affected by historical data information. In the next
step, various factors, such as weather and temperature
in the actual operation of wind turbines can be used
as independent variables input into the model, making
the forecasting model more perfect and having greater
practicality.
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