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Abstract

Photovoltaic power generation is an important component of

achieving sustainable development of renewable energy, and

improving the efficiency of photovoltaic power generation is

crucial. This paper proposes an efficiency optimisation method

for photovoltaic power generation systems based on reinforcement

learning and adaptive model predictive control (MPC). The

method combines reinforcement learning algorithms with MPC to

optimise the control parameters through reinforcement learning

algorithms, achieving dynamic adaptive control of photovoltaic

power generation systems. Firstly, the reinforcement learning

algorithms and interactive learning optimal control strategies are

adopted in order to increase adaptability and robustness in different

environmental conditions. Secondly, the rolling optimisation of

predictive control is achieved to increase efficiency and stability in

photovoltaic power generation systems. In addition, the adaptive

control mechanism dynamically adjusts control parameters by

monitoring environmental parameters and system status in real-

time, ensuring that the system maintains optimal performance

under various operating conditions. Finally, experimental results

demonstrate that the proposed optimisation algorithm not only

significantly increases accuracy and control efficiency of a system

but also significantly boosts stability and reliability in complex

environments for greater application potential.
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1. Introduction

With advances in technology, photovoltaic power genera-
tion systems continue to gain in efficiency and reliability,
leading to their deployment across more centralised
photovoltaic power stations as well as distributed systems
[1]–[3]. Centralised photovoltaic power stations tend to
be located in areas where there is plenty of sunshine,
generating electricity through large-scale photovoltaic cell
arrays and transmitting it to the grid. The distributed
photovoltaic power generation systems are more commonly
used on the roofs of urban buildings, industrial parks,
etc. [4], [5]. By generating and using electricity on-site,
the energy transmission losses are reduced and energy
utilisation efficiency is improved.

Although significant progress has been made in
photovoltaic power generation technology, it still faces
many challenges in practical applications [6]. Photovoltaic
power generation systems’ efficiency is significantly
influenced by environmental conditions, such as lighting
intensity, temperature changes and weather shifts, which
can lead to instability in power generation [7]. Secondly,
although photovoltaic cells’ conversion efficiency has seen
significant gains over time, there is still significant room
for improvement [8], [9]. Again, existing control strategies
and management systems often exhibit certain limitations
when dealing with complex and changing environmental
conditions [10].

Solving these problems and improve the overall
performance of photovoltaic power generation systems,
significant development has been made based on artificial
intelligence control of photovoltaic power generation
systems [11]. However, there are still many shortcomings
in existing technologies in practical applications, which
limit the overall performance and application effectiveness
of photovoltaic power generation systems [12], [13].
Environmental conditions play a substantial role in
influencing the energy production efficiency of photovoltaic
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Figure 1. Photovoltaic power generation system model.

power systems, especially changes in light intensity,
temperature, and weather [14]. Existing photovoltaic cells
exhibit different conversion efficiencies under different
lighting conditions, leading to instability in the system’s
output of electrical energy. Cloudy or windy conditions
may adversely impact photovoltaic cells’ energy production
efficiency and temperature changes may also interfere with
their performance, as excessively high or low temperatures
can reduce their conversion efficiency [15], [16]. In addition,
factors, such as fouling and obstruction of photovoltaic
cells can also lead to fluctuations in power generation [17].

At present, most photovoltaic power generation
systems adopt traditional PID control or simple model
predictive control (MPC). These control strategies,
although capable of regulating the system to a certain
extent, exhibit significant limitations when facing complex
and changing environmental conditions [18]. Traditional
control methods are often based on fixed control
parameters, which are difficult to adjust in real-time
to cope with dynamic changes in the environment. In
addition, these methods often rely on preset models, which
cannot effectively address various nonlinear and uncertain
problems that arise in practical applications, resulting in
slow system response speed and inability to quickly adapt
to environmental changes [19], [20].

In summary, existing photovoltaic power generation
technologies still have many shortcomings in terms of
energy production efficiency, control strategies, adap-
tive capabilities, multi-objective optimisation, and grid
connected operation. This article proposes an efficiency
optimisation method for photovoltaic power generation
systems based on reinforcement learning and adaptive
MPC, based on an in-depth analysis of the shortcomings
of existing technologies. The main contribution of the
proposed method can be summarised as follows.
1) The method proposed in this article achieves dynamic

adaptive control of photovoltaic power generation
systems by introducing reinforcement learning and
adaptive MPC, significantly improving the system’s
adaptability and robustness under different environ-
mental conditions.

2) The photovoltaic power generation optimisation system
proposed in this article achieves efficient and stable
operation of the system through the combination of
multiple advanced control algorithms.

3) The photovoltaic power generation optimisation system
proposed in this article significantly improves the overall
performance of the system through advanced control
algorithms and optimisation techniques. The system
performs excellently in multiple aspects, such as power
generation efficiency, stability, response speed, and
equipment lifespan.

2. Modelling of Photovoltaic Power Generation
System

As illustrated in Fig. 1, the photovoltaic power generation
system investigated in this article comprises various
components including its model and photovoltaic cells
models, inverter model, and energy storage model. The
detailed descriptions of each component are as follows:

1) Photovoltaic Cell Model
Photovoltaic cells form the cornerstone of photovoltaic

power generation systems and their mathematical models
can be described by following formula:

I = Iph − I0
(

exp

(
V + IRs
nVt

)
− 1

)
, (1)

where I is the output current of the cell; Iph is
the photovoltaic current, which is usually proportional
to the solar irradiance; I0 is the reverse saturation current;
The output voltage of V photovoltaic cells; Rs is a series
resistor; n is the ideal factor of the diode; Vt is the thermal
voltage, defined as Vt = kT/q, where k is the Boltzmann
constant, T is the absolute temperature, and q is the
charge.

Ppv(t) of the system can be represented using
mathematical formula:

Ppv(t) = ηpv ·A ·G(t) · ηinv, (2)
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where ηpv is the efficiency of the photovoltaic cell, A is the
area of the photovoltaic cell, G(t) is the solar irradiance at
time t, and ηinv is the efficiency of the inverter.

2) Inverter Model
An inverter’s primary function is to convert direct

current (DC) generated from photovoltaic cells into
alternating current (AC), for use either by power grid
operators or end users. The efficiency of the inverter
ηinv depends on its design and operating conditions. Pinv
can be expressed in terms of output power for inverter
applications:

Pinv = ηinv · Pdc (3)

where Pdc is the dc input power.
The input–output relationship of inverters usually

adopts the following simplified model:

Vac = kinv · Vdc (4)

Iac =
Idc
kinv

, (5)

where Vac and Iac are ac voltage and current, Vdc and Idc
are dc voltage and current, respectively, and kinv is the
voltage gain of the inverter.

3) Energy Storage Device Model
Energy storage devices are used to store excess

electricity from photovoltaic power generation systems
during peak periods and provide power support when there
is insufficient sunlight [18]. The mathematical model of an
energy storage device can be expressed as:

Estored(t) = Estored(t− 1) + ηcharge · Pcharge(t)

−Pdischarge(t)

ηdischarge
, (6)

whereEstored(t) stands for the total stored energy at time t ;
ηcharge and ηdischarge are charging efficiency and discharging
efficiency metrics respectively for energy storage device;
Pcharge (t) denotes charging power at that momentous
moment and Pdischarge (t) is discharging power at that
same point in time.

The state change equation of the energy storage device
can be expressed as:

SOC(t) = SOC(t− 1)

+
ηcharge · Pcharge(t)− Pdischarge(t)/ηdischarge

Emax
,(7)

where SOC(t) is the state of charge, and Emax is the
maximum capacity of the energy storage device.

The photovoltaic power generation system based on
reinforcement learning and adaptive MPC proposed in
this paper achieves dynamic adaptive control of the
photovoltaic power generation system by introducing
advanced control algorithms and optimisation techniques
[16]. The system architecture includes the following key
components:

1) Enhanced Learning Module
This module continuously learns and optimises the

control strategy of photovoltaic power generation systems
using reinforcement learning algorithms such as Q-learning

or deep Q-networks, with the objective being to maximize
long-term cumulative returns using (8) as its criteria for
optimisation,

π= arg max
π

E

[ ∞∑
t=0

γtrt | π

]
, (8)

where π is the strategy, rt is the reward for the time step,
γ ∈ [0, 1] is the discount factor.

2) MPC Module
The MPC module is based on an enhanced learning

optimised control strategy to perform rolling optimisation
of control inputs for a period of time in the future [19].
MPC ensures optimal performance of the system during
each control cycle by adjusting the control input in real-
time, as shown in (9),

min
u(t),...,u(t+N−1)

t+N−1∑
k=t

(
‖ y(k)− yref(k) ‖2Q + ‖ u(k) ‖2R

)
.

(9)

3) Adaptive Control Module
The adaptive control module dynamically adjusts the

control parameters of MPC by monitoring environmental
parameters and system status in real-time to cope
with dynamic changes in environmental conditions. The
adaptive control mechanism ensures that the system
maintains optimal performance under various operating
conditions, and its control process can be expressed as:

θ(t) = θ(t− 1) + α(y(t)− yref(t)), (10)

where θ(t) is the control parameter, α is the adjustment
coefficient, y(t) is the current system output, and yref(t) is
the current reference output.

4) Multi-objective Optimisation Module
This module utilises a multi-objective optimisation

algorithm which takes into account multiple performance
indicators like energy production efficiency, system stabil-
ity, response speed, and equipment lifespan. Multi objective
optimisation problems are usually expressed as Pareto
optimal solutions, which means that there are no other
solutions that can improve all objectives without sacrificing
one objective, as shown in (11),

min
x∈X

F (x) = [f1(x), f2(x), . . . , fm(x)]T . (11)

The architecture design of the entire system is
shown in Fig. 2. Through the above system architecture
design, dynamic adaptive control of the photovoltaic
power generation system has been achieved, significantly
improving the system’s energy production efficiency,
stability, and overall performance.

3. Efficiency Optimisation Algorithm Based on
Reinforcement Learning and Adaptive MPC

3.1 Enhancement Learning Algorithm

Reinforcement learning is a machine learning method
based on experimentation and feedback, which learns
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Figure 2. Iteration steps with reinforcement learning and adaptive model predictive control algorithm.

optimal control strategies through interaction with the
environment. The basic principle is to optimise the control
strategy by maximising cumulative rewards, enabling the
system to adaptively adjust under different environmental
conditions and achieve efficient and stable operation.
The core of reinforcement learning algorithms includes
elements, such as states, actions, rewards, and strategies.
Specifically, the reinforcement learning algorithm can be
described as follows.

1) State Space:
The state space represents the set of states of a

system at a certain moment, denoted as S. In photovoltaic
power generation systems, the state space can include
environmental and system parameters, such as light
intensity, temperature, voltage, and current.

2) Action Space:
The action space represents the set of actions that

a system can take in a certain state, denoted as A. In
photovoltaic power generation systems, actions can include
adjusting the output voltage of the inverter, changing
control parameters, and other operations.

3) Reward Function:
Reward functions R(s,a) represent the immediate

reward obtained by taking action a in state s. When
designed correctly, this type of function should maximise
energy production efficiency while simultaneously decreas-
ing fluctuations of system operation. The reward function
can be defined as:

R(s, a) = α · η − β · σ, (12)

where η is the energy production efficiency, σ is the system
output, and α and β are weight parameters.

4) Strategy:
Reinforcement learning aims at finding an optimal

strategy π∗ which maximises cumulative rewards by
looking for probability distributions of selecting action a
in state s. The strategy π(a|s) serves as the probability
distribution for selecting action a.

5) Value Function:
The value function V π(s) represents cumulative reward

expectations starting from state s under strategy π,
starting in state s itself. It can also be represented
mathematically as

V π(s) = Eπ
[ ∞∑
t=0

γtR(st, at) | s0 = s

]
, (13)

where γ is the discount factor, representing the discount
rate of future rewards.

6) Q-Value Function:
The Q-value function Qπ(s,a) represents the expected

cumulative reward after taking action a in state s under
strategy π. The Q-value function is defined as:

Qπ(s, a) = Eπ
[ ∞∑
t=0

γtR(st, at) | s0 = s, a0 = a

]
. (14)

The optimal strategy π∗ satisfies:

π∗(s) = arg max
a

Qπ(s, a). (15)

3.2 MPC

MPC is an advanced control strategy which optimises
control inputs over time to achieve optimal system
performance in each control cycle. Here, the MPC module
achieves efficient and stable operation of photovoltaic
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power generation systems by real-time optimising of control
strategies using MPC as its foundational control strategy.

1) Establish the System Model:
Firstly, assuming that the state vector of the

photovoltaic power generation system is x(t), the control
input vector is u(t), and the output vector is y(t). The
state space model can be represented as:

x(t+ 1) = f(x(t), u(t)) + w(t) (16)

y(t) = g(x(t), u(t)) + v(t), (17)

where f and g represent state transition function and
output function respectively and w(t) and v(t) represent
process noise and measurement noise, respectively

2) Predicting Output:
In each control cycle, based on the current state x(t),

the system model is used to predict the future N -step
system output y(t+k), where k=1,2,...,N is the prediction
step size.

3) Define Optimisation Objectives:
Goal of optimisation: to minimise deviation between

predicted output and reference trajectory, while minimising
the change in control input. The optimisation objective
can be expressed as the following cost function:

J =

N−1∑
k=0

(
‖ y(t+ k|t)− yref(t+ k) ‖2Q + ‖ u(t+ k) ‖2R

)
,

(18)

where y(t+k |t) is the output of the future k time predicted
at time t, yref(t+k) is the reference trajectory, and are the
weighted quadratic norms, respectively.

4) Solving Optimisation Problems:
Utilising quadratic programming methods to solve

optimisation problems effectively, obtain the optimal con-
trol input sequence u∗ (t) , u∗ (t+ 1) , . . . , u∗ (t+N − 1) for
the next N steps

5) Apply Optimal Control Input:
In practical applications, only the first optimal control

input u∗(t) is executed, and then the next control cycle is
entered, repeating the above steps.

3.3 Adaptive Control Mechanism

The adaptive control dynamically adjusts control parame-
ters by monitoring environmental parameters and system
status in real-time to ensure optimal performance of
the system under various operating conditions. This
mechanism combines reinforcement learning and MPC to
form a closed-loop adaptive control system. Below are the
steps involved with implementation:

1) Real-time Monitoring of System Status and
Environmental Parameters

Real time collection of status parameters (such
as voltage, current, power, etc.) and environmental
parameters (such as light intensity, temperature, etc.)
of photovoltaic power generation systems through data
acquisition and monitoring modules. These data are used
to evaluate the current operating status of the system and
environmental changes.

2) Adaptive Adjustment of MPC Parameters
Based on real-time monitoring data, the adaptive

control mechanism dynamically adjusts the parameters of
MPC to cope with changes in environmental conditions.
The core of adaptive control lies in parameter adjustment
strategies, usually using gradient descent or other
optimisation methods to update control parameters.

3) Parameter Adjustment Strategy
Assuming the control parameter vector is θ(t), the

control parameters are adjusted by the error between the
real-time monitoring data y(t) and the reference output
yref(t). The adjustment strategy can be expressed as:

θ(t+ 1) = θ(t) + α · ∇θJ(θ, y(t), yref(t)), (14)

where α represents the learning rate, and ∇θJ denotes the
gradient of the loss function J concerning the parameter θ.
The loss function J is typically characterised as the mean
squared error between the predicted output and the target
output:

J(θ, y(t), yref(t)) =
1

2

n∑
i=1

(yi(t)− yref,i(t))2, (15)

where n is the dimension of the output vector, yi(t)
and yref,i(t) are the ith output and the reference output,
respectively.

4) Real-time Feedback Control
The adaptive control mechanism utilises updated

control parameters to adjust the system’s control inputs in
real-time, making the system output as close as possible
to the reference output. The modification procedure of the
control input can be articulated as:

u(t) = f(x(t), θ(t)), (16)

where u(t) is the control input, x(t) is the system state,
and f is the control strategy function.

5) Closed-Loop Control System
The combination of adaptive control mechanism and

MPC forms a closed-loop control system. Real time
monitoring data is used to update control parameters,
optimise MPC control strategies, enable the system to
quickly respond to environmental changes, and maintain
efficient and stable operation.

3.4 Multi-objective Optimisation Algorithm

In photovoltaic power generation systems, multi-objective
optimisation algorithms are used to comprehensively
consider multiple performance indicators, such as energy
production efficiency, system stability, response speed, and
equipment life, in order to achieve overall performance
optimisation of the system. Multi objective optimisation
problems typically involve multiple conflicting objectives
and require finding a balance point between different
objectives. To achieve this goal, an adaptive multi-objective
optimisation algorithm utilising Pareto optimal solutions
was devised.
1) Problem Description

By allocating varying weights to each objective
function and merging all these functions into a unified
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comprehensive objective function, a multi-objective opti-
misation problem can be articulated as follows.

min
x∈X

J(x) = w1f1(x) + w2f2(x)

+w3f3(x) + w4f4(x) (17)

J(x) =

m∑
i=1

wifi(x). (18)

Among them, x is the decision variable,X is the feasible
solution space, F(x) is the objective function vector, fi(x)
is the ith objective function, m is the number of objective
functions, wi is the weight of the ith objective function,

and
m∑
i=1wi = 1.

2) Pareto Optimal Solution
The Pareto optimal solution is a solution that cannot

further improve a certain objective without compromising
other objectives. Mathematically, the solution x* is a
Pareto optimal solution, If and only if there is no other
solution x ∈ X , such that: fi(x) ≤ fi(x∗),∀i = 1, 2, . . . ,m

fj(x) < fj(x
∗), at least j ∈ {1, 2, . . . ,m}

. (19)

Based on the above analysis, Fig. 2 shows the
processing and optimisation iteration steps of the rein-
forcement learning and adaptive MPC algorithm. Through
these steps, the proposed algorithm can achieve overall
performance optimisation of photovoltaic power generation
systems by finding an ideal equilibrium point between
various optimisation objectives, ultimately optimising
overall power production efficiency.

4. Results and Discussion

The testing was conducted on MATLAB/Simulink plat-
form and actual experimental platform. The experimental
model includes main components, such as photovoltaic
cells, inverters, energy storage devices, and control systems,
which can truly reflect the operating characteristics and
control behaviour of solar energy generation systems.

The experimental platform includes high-efficiency
monocrystalline silicon photovoltaic modules, high-
efficiency inverters, lithium battery energy storage systems,
and environmental sensors (used to monitor light intensity,
temperature, voltage, current, power, etc.). Real time
collection of environmental parameters and system status
data for data processing and monitoring. The data
collection frequency is set to once every 0.1 s to ensure
real-time and accurate data.

4.1 Parameter Settings

The parameter settings cover both experimental model
parameters and algorithm parameters, ensuring the
rationality and reliability of the test results.

The experimental model parameter settings are shown
in Table 1.

The algorithm parameter settings are shown in
Table 2.

Table 1
Experimental Model Parameter Settings

Module Parameter Name Parameter Values

PV Types of photovoltaic
cells

Single-crystal silicon

Rated power 250 W

Efficiency 20%

Total area of array 20 m2

Inverter Rated power 5 kW

Efficiency 95%

Input voltage range 300–600 V

AC output voltage 230 V

ESS Type of energy storage Lithium battery

Total capacity 10 kWh

Efficiency 90%

Range of power 0–5 kW

The hardware module parameter settings for experi-
mental parameters refer to Table 1, and other parameter
settings are shown in Table 3.

4.2 Experimental Result Analysis

Figure 3 depicts the variation of energy production
efficiency over time of photovoltaic power generation
systems with various control strategies applied. The trend
of energy production efficiency over time clearly reflects the
variation of light intensity within 24 h of a day. The energy
production efficiency under the four control strategies
showed similar trends, increasing with increasing light
intensity and decreasing with decreasing light intensity.
At night (when the light intensity was zero), the energy
production efficiency was also zero. The energy production
efficiency under PID control strategy is relatively low,
with an average energy production efficiency of about
0.29 and a peak energy production efficiency of about
0.79. Although PID control is simple, its adaptability
to environmental changes is poor, which has resulted in
considerable fluctuations in energy production efficiency;
the implementation of MPC has significantly enhanced this
efficiency, with an average energy production efficiency of
about 0.31 and a peak energy production efficiency of about
0.84. MPC control has improved the stability and energy
production efficiency of the system to a certain extent. The
energy production efficiency is further improved under the
adaptive MPC strategy, with an average energy production
efficiency of about 0.33 and a peak energy production
efficiency of about 0.89. Adaptive MPC can dynamically
adjust control parameters according to environmental
changes, considerably enhancing the efficiency and stability
of the power generation system. The method described in
this article corresponds to the highest energy production
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Table 2
Algorithm Parameter Settings

Module Parameter Name Parameter Values

RL Algorithm type Deep Q Network

Reward function weight 1,0.01

Learning rate 0.001

Discount factor 0.9

Experience replay buffer size 10000

Target network update frequency 1000

MPC Predicting time domain 10 step

Control time domain 5 step

Adaptive control Initial control parameters [1,0.5]

Learning rate 0.01

Loss function mean squared error

Table 3
Experimental Parameter Settings

Module Parameter Name Parameter Values

Sensors Light intensity sensor 0–1200 W/m2

Temperature sensor −20 to 50◦C

Voltage sensor 0–600 V

Current sensor 0–50 A

Figure 3. Photovoltaic energy production efficiency under
different strategies.

efficiency, with an average energy production efficiency
of about 0.35 and a peak energy production efficiency of
about 0.93. This method combines reinforcement learning
and adaptive MPC to effectively learn and optimise
control strategies, achieving dynamic adaptive control of
photovoltaic power generation systems and significantly
improving the overall performance.

Figure 4. Photovoltaic output power under different
strategies.

Figure 4 shows the variation of output power of
photovoltaic power generation system under different
control strategies under the conditions of light intensity
and temperature changes. As light intensity increases, so
too does output power; On the contrary, as the intensity
of light decreases, the output power gradually decreases.
In addition, temperature changes also have an impact on
output power. The temperature gradually increases from
morning to noon and gradually decreases in the evening.
Due to the decrease in energy production efficiency caused
by temperature rise, the output power slightly decreases
at the highest temperature. Although PID control is
simple, its adaptability to environmental changes is poor,
resulting in significant fluctuations in output power. The
output power under MPC strategy has been improved
with less fluctuation. Average output power levels remain
relatively high, with a peak output power of about 840
W. MPC control has enhanced the system’s stability and
output power to some degree. By combining reinforcement
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Figure 5. Analysis of multi-objective and single objective
optimisation effects.

learning and adaptive MPC, dynamic adaptive control of
photovoltaic power generation systems has been achieved,
significantly improving the output power and stability of
the system.

Figure 5 illustrates the comparison of different per-
formance indicators for the method proposed in this
paper across three scenarios: without optimisation, with
single-objective optimisation, and with multi-objective
optimisation, reflecting the impact of different optimisation
strategies on four key performance indicators: energy
production efficiency, system stability, response speed,
and equipment life. In terms of energy production
efficiency, the single objective optimisation strategy has
the highest energy production efficiency, reaching 0.93.
This is because the single objective optimisation strategy
only optimises energy production efficiency and ignores
the optimisation of other performance indicators. However,
the drawbacks of this single optimisation method are also
very obvious, that is, the system stability, response speed,
and equipment lifespan have not been effectively improved.
The multi-objective optimisation strategy performs well

in balancing various performance indicators. While the
energy production efficiency following multi-objective opti-
misation is marginally lower than that of single-objective
optimisation, the system stability, response speed, and
equipment lifespan are significantly improved compared
to non-optimisation and single objective optimisation.
This indicates that multi-objective optimisation strategies
can significantly improve overall performance without
significantly reducing energy production efficiency. In
addition, all performance indicators of the non-optimised
strategy are at a relatively low level. This indicates that
without optimisation measures, the system performance
is poor and difficult to meet the needs of practical
applications.

Figure 6 presents a comparison and analysis of the
average energy production efficiency and average output
power across various weather conditions. The results
indicate that, regardless of the weather, the average
energy production efficiency and average output power of
the proposed method are significantly greater than those
of the other three control strategies. This demonstrates
the effectiveness and advantages of the proposed method
in optimising photovoltaic power generation systems,
confirming its adaptability and robustness in dynamic
environments, but also provides its broad prospects in
practical applications. This method combines reinforce-
ment learning and adaptive MPC to effectively optimise
the control strategy of photovoltaic power generation
systems, achieving efficient, stable, and reliable power
generation performance. It has important application value
and promotion potential.

5. Conclusion

This article details a system designed to optimise
photovoltaic power generation using reinforcement learning
and adaptive MPC techniques for dynamic adaptive man-
agement of photovoltaic production systems. To improve
adaptability and robustness under various environmental
conditions, the system employs reinforcement learning

Figure 6. Comparison of average efficiency and output power under different weather conditions from 6 to 18 h: (a)
Comparison of average efficiency and (b) Comparison of average output power.
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algorithms to discover an optimal control strategy through
interaction with its environment. The MPC module then
utilises this optimised strategy to forecast future control
inputs, ensuring efficient and stable operation of the
photovoltaic power generation systems.

Additionally, adaptive control mechanisms dynami-
cally adjust control parameters in real-time by monitoring
environmental variables and system status, maintaining
peak performance across all operating conditions. This
system employs multi-objective optimisation algorithms to
enhance energy production efficiency while also considering
system stability, response speed, and lifespan requirements,
ultimately improving the overall performance of the
photovoltaic power generation system.

Finally, the experimental results demonstrate that
the proposed optimisation system significantly enhances
accuracy, control efficiency, and stability/reliability in
complex environments, showcasing its broad application
potential.

Future work could aim to reduce the computational
complexity of the multi-objective optimisation algorithms.
This reduction would lead to faster decision-making
processes, making the system more responsive to rapid
environmental changes and thus improving its practical
application value.
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