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LASER SLAM ALGORITHM BASED
ON MULTIPLE CONSTRAINTS IN
DEGENERATE SCENARIOS
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Abstract

In the factory environment, the spatial scale is large and there are
many similar scenes. Traditional laser SLAM methods are prone
to scene degradation, low positioning accuracy, and large mapping
errors. This method is applied in the front-end by incorporating pre-
integrated processed inertial measurement unit data and lidar data
as constraints into subsequent optimisation. A keyframe is selected
at regular intervals, and the best estimated pose is obtained through
radar scanning matching. Then the best estimated pose is added to
the sub map to estimate the robot’s pose, and cumulative errors
are eliminated through loop detection and global optimisation. A
comparative experiment will be conducted between the laser SLAM
method based on graph optimisation and the method proposed in
this paper. The experiment shows that the improved SLAM method
based on multiple constraint conditions in this paper can improve
the mapping accuracy while reducing positioning errors compared
to traditional SLAM methods.
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1. Introduction

In recent years, more and more factories are using intelli-
gent equipment [1]. Through more intelligent equipment,
the production efficiency can be greatly improved. At
the same time, the demand for mobile robots in the
factory is also constantly increasing. Transporting goods
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through mobile robots can not only save labor costs,
reduce the risk of accidents for people when handling
goods, but also improve the efficiency of goods handling.
As a result, more and more companies and enterprises
are increasing their investment in mobile robot research.
Simultaneous localisation and mapping (SLAM) is an
extremely important part of the study of mobile robots.

SLAM is a technique for simultaneous positioning
and map construction [2], also known as the concurrent
mapping and localisation (CML). SLAM technology
allows robots to locate and map their surroundings in
an unfamiliar environment. Implementation of SLAM
methods can often be done using multiple different sensors.
Therefore, we usually divide SLAM into laser SLAM [3]
and the visual SLAM [4].

Visual SLAM uses visual sensors (depth cameras) to
estimate the robot’s own pose [5] and build a map of the
surrounding environment. The robot captures the image
of the environment through the camera and extracts the
feature points in the image. Then, by comparing the feature
points in different frame images, the robot can estimate
its own motion and build a three-dimensional map of
the environment. However, visual SLAM is influenced by
environmental illumination, texture and other factors, so
there may be visual feature extraction and tracking errors,
so the accuracy and stability in some complex scenes are
relatively low.

Different from visual SLAM, laser SLAM has a better
performance in positioning accuracy and mapping stability,
mainly due to the point cloud data derived from accurate
lidar sensors. Lidar obtains information about the distance
and angle of objects in the environment by transmitting
a laser beam and receiving reflected light signals. Most of
the current mobile robot projects also use lidar.

The SLAM system framework (as shown in Figure 1) is
roughly divided into five parts: sensor data acquisition and
processing, front-end odometer, back-end optimisation,
loop detection, and map construction. The laser radar
emits laser ranging information at a certain frequency,
the front odometer calculates the corresponding machine
position through the laser ranging information, which
contains the cumulative error, the back end optimisation
will optimise the global trajectory, and the loop detection
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Figure 1. The SLAM system framework.

is also running to eliminate the cumulative error during
the whole system operation.

In SLAM systems, data processing methods are also
classified into loose coupling and tight coupling. In a loosely
coupled system, each sensor is treated as an independent
module, and each module uses the information it obtains to
calculate and obtain its own results. Then put these results
into the state optimisation equation for optimisation, in
order to obtain the fused optimised pose. Zhang and Singh
proposed the V-LOAM method [6], which utilises the
results of loosely coupled visual inertial odometry as the
initialisation prior for the lidar mapping system. Palieri
et al. [7] proposed a multi-sensor fusion scheme LOCUS
centered on lidar, which adds a state detection module to
select the most optimal option for optimisation before lidar
scanning matching.

A tightly coupled system is different, as it directly
processes the raw or intermediate data obtained from
various sensors together. The measured values of different
sensors are put into the state optimisation equation,
and then the fusion optimised pose is obtained. Han’s
team integrated the lidar inertial system and visual
inertial system into a tightly coupled frame with a sliding
window [8], where when one system detects a fault, the
other frame can work independently or work together
under good conditions. Zuo et al. [9] proposed an LIC
fusion framework based on MSCKF, which utilises inertial
measurement unit (IMU) measurements, sparse visual
features, and radar features, supplemented by temporal
and spatial calibration for state estimation. Compared with
loosely coupled methods, tightly coupled methods can fully
consider the inherent constraints between sensor data and
jointly determine the final result.

The laser SLAM algorithm is currently mainly
divided into filter based laser SLAM algorithm [10] and
graph optimisation [11] based laser SLAM algorithm.
The SLAM algorithm based on filters is suitable for
scenarios with high real-time requirements due to its small
computational complexity. However, compared to the laser
SLAM algorithm based on graph optimisation, it lacks
optimisation for global trajectories and may perform poorly
in complex environments.

In graph optimisation algorithms, there are mainly
Hector SLAM method and cartographer algorithm. By

improving the generation of initial values in Hector SLAM,
the reliability of the algorithm can be improved. For
example, Wei [12] used the Near Point Matching (PL-
ICP) method to locate and correct the direction and
position of the robot using a reference frame during
the initialisation stage of the algorithm. However, Hector
SLAM only uses lidar in the process of building maps,
without considering odometer information. The overall
accuracy of the algorithm depends on lidar and has high
frequency requirements. Xin and Huasong [13] improved
the accuracy of point cloud matching and significantly
enhanced the quality and trajectory accuracy of map
construction by using velocity pre integration method on
the original cartographer framework for pose enhancement.
However, it is still prone to image feature extraction
or matching failure, resulting in map ghosting or angle
misalignment. Liang [14] designed a multi-sensor fusion
scheme based on pose increment, which improved the
effectiveness of cartographer mapping. However, if the
data volume accumulates, the real-time performance may
decrease, leading to problems, such as map ghosting and
increased positioning errors. At present, the mainstream
laser SLAM algorithm based on graph optimisation is
difficult to provide correct poses in factory scenes with
single, regular or symmetrical environmental textures.
Laser matching algorithms are difficult to distinguish
similar scenes and are prone to scene degradation caused
by incorrect matching.

For the above issues, this article introduces IMU [15] to
compensate for the impact of scene degradation, and treats
the inertial coordinate system and radar coordinate system
as a whole. The point cloud information of adjacent two
frames is selected, and the initial value of the optimisation
factor is used to map the point cloud information of the
two frames to the inertial coordinate system to obtain
new point cloud information. Then, the next frame is
mapped to the inertial coordinate system corresponding
to the previous frame. The accuracy of the optimisation
factor is judged by the degree of overlap between the
two frames, and the distance between the two points is
calculated. This can reduce the errors generated in pose
estimation, thereby improving the positioning accuracy.
Through public dataset simulation experiments, it was
verified that the method of using inter frame matching



error can improve the mapping accuracy of multi constraint

laser SLAM method.

2. Related Work

The SLAM algorithm requires external sensors to input
odometer information for pose estimation, and IMU and
lidar data need to be processed first during pose estimation.
Further fuse and calibrate the data from IMU and lidar
sensors, and unify the data from both sensors into the
vehicle coordinate system.

2.1 IMU Principle and Function

IMU, also known as inertial measurement unit, is a
sensor that can provide effective local motion estimation
and accurately determine the attitude of an object,
including direction, angle, and tilt. IMU mainly consists
of gyroscopes and accelerators, and may also include
measurement units such as magnetometers.

A typical six axis IMU measures linear acceleration
and rotational angular rate from three directions through
its built-in gyroscope and accelerometer. Accelerometers
can measure the linear acceleration of objects along the
z, y, and z axes, while gyroscopes are responsible for
measuring the angular velocity of objects around these
three axes. Internally, they can calculate angular velocity
and acceleration based on other physical quantities such
as force or time, but externally, only the accuracy of their
measurement of angular velocity and acceleration, as well
as the relationship between these quantities and vehicle
position and attitude, need to be considered.

IMU plays an important role in SLAM systems,
estimating the position and attitude changes of robots
during motion by measuring the acceleration and angular
velocity on the three axes. This process is called odometer.
In this method, the fusion of IMU data and laser sensor
data to some extent compensates for the impact of scene
degradation. When the laser sensor cannot obtain sufficient
feature information, the IMU can provide continuous
attitude and velocity information to help the system
maintain stable positioning and map construction. The
pre-integrated IMU data and lidar data are combined
as constraint conditions to be added to the subsequent
optimisation, generating sub maps and estimating the
robot’s pose. Then, cumulative errors are eliminated
through loop detection and global optimisation, which
improves the overall robustness and accuracy of the SLAM
system to a certain extent.

2.2 IMU Pre-Integral Processing

Pre-integrating IMU data can process accumulated IMU
data over a longer period of time, just add the previous
integral and the motion increment between the two frames
to reduce the number of integration in the optimisation
process, thus saving computing resources and improving
real-time performance [16]. In an IMU system, five variables
are considered: rotation R, position p, angular velocity w,
linear velocity v, and acceleration a.

The position p, speed v and attitude ¢ at time ¢ and j
are related as in 1:
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In the above equation, ¢ is the time point, w and b
are the world and IMU coordinates, g is gravity, a; is the
observed value of the speedometer, @; is the gyroscope,
b,, is the acceleration bias, b,, is the gyroscope bias,
and ® is the quaternionic multiplication. Separating from
the discretization equation of motion between time i and
time j, the IMU pre-integral quantity is obtained as

follows 2:
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aZi;,ﬁf;,’yfj’f are position pre product component, veloc-
ity pre product component, and attitude pre prod-
uct component, respectively. The state information at
any time can be obtained by the IMU equation of
state.

2.3 Lidar Data Preprocessing

The laser odometer needs to first derive the residual
difference of the relative pose and the two optimisation
variables. The laser odometer factor from time 7 to time j is
shown in 3, and the neutralisation indicates the translation
matrix and the rotation matrix in the laser odometer,
respectively T, Ry:

ri, = RN (T; —=T;) =Ty,

1%

ror = In(R] R;R]) . (7)

Then evaluate the translation and rotation changes

at time ¢ and j, respectively to obtain the corresponding
Jacobian matrix, such in 4:
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To obtain the results of the translation change and the
rotation change between the two moments, after forming
the Jacobian matrix, it can be added to the optimisation,



Table 1

Calibration Parameters of Inertial Navigation for Vehicle Coordinate System

Installation Parameters Unit | Numerical Value
Inertial navigation angle installation deviation roll angle | Roll angle © 0.461
Pitch angle ° —0.566
Heading angle ° 0
Antenna angle installation deviation Roll angle ° 0
Pitch angle ° 0
Heading angle ° 0
Inertial navigation—Rear axle centre position vector longitudinal separation (x)| m —0.34
Left and right distance (y) | m 0
Up and down distance (z) | m 0.45
Inertial navigation—Main antenna position vector longitudinal separation (x)| m —0.44
Left and right distance (y) | m 0
Up and down distance (z) | m 0.14
Track width m 0.7

and together with the IMU pre-integration factor as a
constraint to obtain a more accurate pose, which further
improves the accuracy of the subsequent map construction.

2.4 IMU and Lidar Coordinate System Calibration

Due to the fact that various sensor data is generated based
on their own coordinate system, it is necessary to fuse
and calibrate different sensor data when multiple sensor
data are needed. This method unifies the data of different
sensors to the car body coordinate system.

This method installs IMU sensors and lidar sensors
on the platform. First, calibrate the inertial navigation
coordinate system and the vehicle coordinate system,
including the setting of the inertial navigation on the rear
axle main antenna, the setting of the inertial navigation
angle installation deviation, etc. Table 1 lists the specific
parameters that need to be written into the equipment
after measuring the relevant distances in each axis.

After completing the coordinate system calibration
between inertial navigation and vehicle body, convert the
coordinate systems of inertial navigation and radar. There
is a six degree of freedom rigid body transformation
between inertial navigation and radar. By solving the
relative external parameters (R, T) between inertial
navigation and radar, the coordinate information of
the radar can also be transformed into the vehicle
coordinate system. During the calibration process, this
method uses O — X;Y;Z; as the inertial coordinate system
and O — X Y. Z as the radar coordinate system, and
then solves the external parameters through optimisation
methods, using (R, T) as the factor that needs to be
optimised.

Firstly, set the status of the starting point position
of the system platform to A;. At this time, the inertial

coordinate system and radar coordinate system are
integrated, and the information of a point cloud near the
starting point is L;. Then, let the platform travel a certain
distance and stop at As. At this time, the information of
a point cloud near the starting point is Ls. During this
process, the inertial navigation obtains (Ry,T;) for the
rotation and translation during the motion process through
the integration operation shown in Fig. 2. The initial value
of the factors (R, T) that need to be optimised is set to
(Ro, To).

In the process of optimising coordinate information,
first use the initial value of optimisation factor (Rg, 7o)
to map point cloud information L; and Lo to states
Ay and A, corresponding to O — X;Y;Z;. The newly
generated point clouds are L} and L. Based on the inertial
integration operation, (Ry,T}) is obtained, and then L, is
mapped to state A corresponding to O— X ;Y7 Z;, resulting
in point cloud Lg. So the accuracy of the optimisation
factors (R, T) can be determined based on the degree of
overlap between L} and Lg. For each point in L}, find the
shortest point in Lg , consider it to be the corresponding
point, and then calculate the distance between the two
points. For disordered point clouds, using the kd-tree
nearest neighbour search algorithm can improve search
efficiency. Then, the square of the distances between each
corresponding point is added to obtain the optimisation
equation, as shown in 5, where ¢; and p; are points in point
clouds L/l = {ql7q23 BERE) qn} and LI2 = {p17p2a cee ,pn}
Finally, the rotation matrix R and the translation matrix
T that minimise E are iteratively solved to complete the
calibration:

B=min" g - (Rp: + 7). (10)
i=1
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Figure 2. Inertial navigation pose calculation process.
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3. A 2D Laser SLAM Based on Multiple Condit
Constraints

The laser SLAM algorithm in this paper is improved by
the current framework of cartographer algorithm, which
performs better in accuracy, real-time, and robustness. In
the front end, most SLAM systems need keyframes to
store scanning data in different regions, and the selection
of submaps is a more convenient way to manage scanning
data. As shown in Fig. 3, this method selects a key
frame at every other distance, and then matches by radar
scanning (Scan Matching) [17]. Find the best estimated
pose and add the best estimated pose in the keyframe
to the subgraph (Submap). In this process, if the robot
moves beyond the current submap, or the current submap
contains more keyframes than a certain number, a new
submap is generated again. At this time, there is no data
generated at the submap. This paper takes the current
frame as the centre of the submap. At this time, the
relationship between the submap and the world coordinate
system and the relationship between the current scan data
and the world coordinate system are consistent. It also
puts the keyframe of the old submap into the new submap,
which also prevents the new submap from being registered
due to lack of data. Finally, merging the raster map of each
submap yields the global map.

The improved algorithm (as shown in Figure 4) takes
IMU pre-integral data and lidar data as the constraint
optimisation pose, and IMU pre-integral can be used as
the observation data of the current map scan matching and
the loaded prior map as the match. Iterative closest point
(ICP) is mainly used for feature matching [18] algorithm.
The point-to-line ICP algorithm is used here. The ICP
algorithm divides the scan matching problem into data
association and pose estimation, and it rotates these two
steps until the results converge. In the nearest neighbour
search, we also need to find multiple nearest neighbours,
and fit a straight line, and finally calculate the distance
between the target point and the straight line. Set k£ nearest
neighbour points as 1, ..., xk, Set the line equation to:

ar + by = 0. (11)

Where a, b, ¢ are the parameters of the line, which
is the least squares problem when the line fitting becomes
the parameter estimation:

N
(a,b,c)" = arg minz |az" + by" + cHz . (12)

i=1

Then arrange the point coordinates into a matrix:

x1 Y1 1

T 1
A= |0 (13)

Tk Y 1

Then we find the minimum singular value vector of A.
After obtaining the line parameters (a, b, ¢) of the nearest
neighbour point, the vertical distance from any point (z,
y) to this line can be expressed as:

_ar+by+c
Vaz+u2

The denominator part is a fixed constant, temporarily
ignored first, so the residue can be left out:

(14)

e=az+by+c (15)
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As the target formula, the Jacobian matrix correspond-
ing to the line equation is:

Oe Oe
o = 9y b. (16)
Add the above results to the position of the lidar itself,
and set the position and angle of the lidar as = = (x,y, 0),
so for a laser point, set the distance and Angle as, and
transfer the point to the world coordinate system to obtain
p. Its several nearest neighbour fitting line parameters
are (a;, b;, ¢;), and the Jacobian matrix of its residual pose
can be expressed using the chain rule:

de; ey opV
oz oplV Oz’

(17)

D-LIOM algorithm [19] propose to classify IMU data
into both dynamic and static initialisations. In this paper,
the timestamp of the lidar data of the current frame and the
previous frame is selected to calculate the pre-integration
of the IMU data between the two frames of lidar data.
During scanning, the LIDAR and IMU data are matched
to obtain the observed pose and used as the error generated
by the constrained optimised pose estimation.

4. Experiment and Results Analysis

This article uses simulation software to analyse the
experimental results, using the publicly available data set
of the German Museum, which includes IMU data and
lidar data. This article mainly studies the mapping effect
of the method and cartographer algorithm in open and
narrow scenes, which can meet the requirements of this
experiment.
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Figure 5. CPU usage during the mapping process.

Table 2
CPU Usage During the Mapping Process
SLAM Cartographer | Hector Improved
Algorithm Algorithm Algorithm | Algorithm
Average 20.8950 8.5641 16.9126
occupancy rate
of CPU (%)

4.1 Experimental Platform

The hardware equipment selects a laptop with Linux
ubuntu 18.04 operating system; the corresponding robot
operating system (ROS) [20] is melodic.

This paper uses Rviz to display the built maps. Rviz
(ROS Visualisation) is a powerful visualisation tool in
ROS, providing a 3D interface that can be used to display
information about sensor data, robot status, and mapping
results. Users can display a variety of information by adding
different display panels (Display Panels). For example, by
adding TF panels to display the transition relationships
between different coordinate systems, by adding submaps
panels to display the constructed maps, etc.

4.2 CPU Usage During the Mapping Process

Using the top analysis tool in Ubuntu, analyse the CPU
usage of Hector algorithm [21], cartographer algorithm,
and the algorithm proposed in this paper. The processor
of the computer running the laser SLAM algorithm is an
Intel Core i5-8300H CPU. The CPU utilisation of three
laser SLAM algorithms is shown in Figure 5.

Compare the average CPU usage of three laser SLAM
algorithms, as shown in Table 2.

From Fig. 5, it can be seen that the occupancy rate of
our algorithm exhibits periodic peaks, and as the mapping
process progresses, the peaks become higher and higher.
The reason for this situation is that the algorithm in
this article performs closed-loop detection every once in
a while, and over time, more and more local submaps
are created. Using the current lidar information to scan
for loop detection requires matching more and more local
submaps. Therefore, the CPU usage of loop detection is
also increasing, and the peak of the CPU usage of the



algorithm in this article shows a growing trend. The CPU
usage of the algorithm in this article is slightly higher than
that of the Hector algorithm in the figure. This is because
the algorithm in this article incorporates odometer data,
reducing computational complexity. Additionally, map
resolution, radar frequency, and the number of particles
in the filter also affect the CPU usage of the algorithm in
this article. According to Table 2, the average CPU usage
of the cartographer algorithm is the highest, at 21.2326%;
Hector has the lowest average CPU usage because it uses
less information and does not have a closed-loop detection
process; the average CPU usage of the algorithm in this
article is 17.8750%, which is 3.3576% lower than that of
the Cartographer algorithm. The running pressure of the
algorithm in this article is moderate.

From the above experiments, it can be seen that
the method proposed in this paper can still ensure good
running occupancy while increasing the computational
complexity of the mapping process.

4.3 Degeneration Scene Mapping Experiment

Current laser SLAM algorithm based on graph optimisa-
tion has the karto algorithm [22] and the cartographer
algorithm [23]. Karto algorithm is the first graph-
based algorithm with loop detection, but the real-time
performance is poor, and cartographer algorithm is
improved on the basis of karto algorithm with higher
accuracy and stronger real-time performance. In this
experiment, the cartographer algorithm and the improved
graph optimisation algorithm were used to compare the
established grid map and analyse the mapping effect of the
two algorithms.

First, compare the drawing effect of the two algorithms
in more small channel scenes. Figure 6(a) for the map built
for the cartographer algorithm, it can be seen that the
overall accuracy of the built map is relatively high, and the
scene features are complete, but there are obvious double
shadows at the edge of the map, and the map boundary is
relatively blurred. Figure 6(b) shows the map constructed
by the improved SLAM algorithm in this paper. It can be
seen that the ghosting problem at the edge of the map is
significantly improved and the map boundary is clearer.

Figure 7 shows the mapping effects of two algorithms
in a wide scene. It can be seen in the figure that there
is no big difference between the overall appearance of the
map established by the two algorithms, but it can still be
seen that the map edge built by cartographer algorithm
has more weights and the map boundary has more burrs.
However, the map edge built by the improved SLAM
algorithm is relatively smooth and clearer.

Compared with the pictures, the specific data can
show more obvious differences. In this experiment, seven
positions were selected as the test points, recording the true
value of each position in the test point in the actual map
and the test value of the constructed map. Table 3 shows
the measurement data of the cartographer algorithm, the
minimum absolute error is 0.8 and the maximum absolute
error is 4.2; the minimum relative error is 0.456% and
the maximum relative error is 1.194%. Table 4 is the

Figure 6. Maps constructed by both algorithms in narrow
channel scenarios: (a) map constructed by the cartographer
algorithm and (b) map constructed by the improved SLAM
algorithm.

Figure 7. Map constructed by both algorithms in broad
scenes: (a) Map constructed by the cartographer algorithm
and (b) Map constructed by the improved SLAM algorithm
in this paper.

measurement data of the improved SLAM algorithm, the
minimum absolute error is 0.6 and the maximum absolute
error is 3.3; the minimum relative error is 0.646% and
the maximum relative error is 1.176%. It can be seen
that the mapping error in a small range is not very
different between the two algorithms, and even the error
in individual measurement points cartographer is smaller.
However, when the range and distance are constantly
increasing, the error of cartographer is significantly larger
than the improved algorithm in this paper.



Table 3

Map Measurement Data of the Cartographer Algorithm

Measurement Point Number | Ground Truth (cm) | Measured Value (cm) | Absolute Error (cm) | Fractional Error (%)
1 67 67.8 0.8 1.194
2 102 103.1 1.1 1.078
3 194 192.5 1.5 0.773
4 263 264.2 1.2 0.456
) 336 332.6 3.4 1.011
6 422 424.7 2.7 0.639
7 496 500.2 4.2 0.847
average - - - 0.857
Table 4
The Improved SLAM Algorithm
Measurement Point Number | Ground Truth (cm) | Measured Value (cm) | Absolute Error (cm) | Fractional Error (%)
1 67 67.6 0.6 0.895
2 102 103.2 1.2 1.176
3 194 195.8 1.8 0.927
4 263 264.7 1.7 0.646
5 336 338.6 2.6 0.773
6 422 424.9 2.9 0.687
496 499.3 3.3 0.665
average - - - 0.824
et caroa increasing cumulative error, also can see the improved
ractional error (%) algorithm accuracy and higher stability, make the scene
i e _ degradation problem to a certain extent, and the average
== This paper improves o the SLAM algorithm relative error than cartographer algorithm reduced by
14 about 3.8%.
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Figure 8. Relative error line plot of the cartographer
algorithm and the improved algorithm in this paper.

The relative error line diagram of the map constructed
by the two algorithms is shown in Fig. 8. It can be seen
that with the increase of the measurement point distance,
the improved SLAM algorithm can be better than the
cartographer algorithm.

The experiment can be seen for small scene map
two algorithm effect is very good, but when the scene
becomes bigger, cartographer algorithm error will increase,

This article investigates the differences in mapping
accuracy between different laser SLAM algorithms in
environments with large spatial scales and multiple similar
scenes. This article introduces the IMU method, which can
compensate for the impact of scene degradation. At the
same time, the inertial navigation coordinate system and
radar coordinate system are treated as a whole, and the
method of frame matching error can solve the problem of
large errors in pose estimation. The experimental results
show that the cartographer algorithm can still achieve good
mapping results in narrow scenes, but in wide scenes, it
can be clearly seen that there are many heavy shadows
on the map boundaries. In the future, we will focus more
on practical applications and consider integrating UWDB
positioning methods to achieve high-precision, real-time
robot trajectory estimation and map construction.
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