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Abstract

UAVs (unmanned aerial vehicle) are widely employed in disaster
relief, agricultural monitoring, logistics distribution, and military
reconnaissance. With the expansion of UAV network scales, there
are heightened demands for task allocation, path optimisation,
and system robustness. The intrinsic community structures within
UAV networks play a vital role in enhancing task efficiency and
network performance. In order to use the potential community of
UAVs to assist in scheduling UAV network scheduling, we propose
a novel semi-supervised community construction method based
on iterative cross-layer graph contrastive learning. This method
integrates graph-level and node-level information to identify key
nodes and community structures, thereby optimising task allocation,
path planning, and system performance. Experimental results on
various datasets demonstrate the methods efficiency in handling
large-scale UAV network data and meeting real-time and robustness
requirements. It holds significant potential in the realms of intelligent

UAV collaboration and automated control.
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1. Introduction

With the exponential growth of unmanned aerial vehicle
(UAV) technology, multi-UAV networks have become
increasingly prevalent in critical applications such as
disaster response systems, precision agriculture monitor-
ing, autonomous logistics, and intelligent surveillance [1].
These networks rely on collaborative task execution among
heterogeneous UAV swarms to achieve complex missions
including target tracking, environmental sensing, and
payload delivery. However, scaling such systems introduces
significant challenges in dynamic task allocation, real-
time path optimisation, and fault-tolerant operation [2].
A key observation is that UAV collaboration patterns
often form hierarchical community structures characterised
by dense intra-group interactions and sparse inter-group
connections, which are shaped by topological proximity,
communication bandwidth constraints, and mission objec-
tives [3], [4]. Identifying these latent community structures
is essential for optimising system performance through
localised task scheduling, energy-efficient routing, and
adaptive resource management.

Community detection, a fundamental problem in
complex network analysis, aims to partition graphs into
cohesive subgraphs with high internal connectivity [5].
In the context of UAV networks, this process enables
the discovery of functional clusters that share common
operational requirements. For instance, geographically
proximate UAVs forming a community can be assigned
interdependent tasks to minimise communication latency
and energy expenditure. Moreover, detecting central nodes
within communities allows for priority-based resource
allocation, while dynamic community adaptation enhances
system resilience against node failures or environmental
changes [6]. These capabilities are particularly critical
for real-time systems where mission success depends on
efficient coordination.

Existing community detection algorithms face sig-
nificant limitations when applied to UAV networks.
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Figure 1. Similarity comparison of graphs. Graph-level
representation and node-level representation are the
features of two levels.

Traditional methods such as vGraph lack scalability and
fail to capture dynamic topological changes inherent
in mobile networks [7]. Graph embedding techniques
like DeepWalk, while theoretically sound, struggle with
temporal variations and require prohibitive computational
resources for large-scale deployments [8], [9]. Furthermore,
most approaches ignore the hierarchical nature of UAV
networks [10], where both global topological properties and
local node features contribute to community formation.

Addressing these challenges requires a novel approach that

integrates multi-scale graph representations with adaptive

learning mechanisms.

To bridge this gap, we propose a semi-supervised com-
munity construction method based on iterative cross-layer
graph contrastive learning (CGNet), as shown in Fig. 1,
aiming to provide efficient support for multi-UAV collabo-
ration and automated system optimisation. By combining
graph-level and node-level information and designing a
cross-layer contrastive loss function, the proposed method
can efficiently identify key nodes and community structures
in UAV networks, thereby supporting task allocation, path
planning, and system optimisation.

The contributions of this paper are summarised as
follows.

(1) The research presented in this paper provide a new
solution for intelligent UAV collaboration and auto-
mated control through the detection and construction
of UAV community networks, with broad application
potential in scenarios such as disaster relief and
logistics distribution.

(2) The designed cross-layer contrastive learning frame-
work, combining graph-level and node-level informa-
tion, enhances detection accuracy while continuously
optimising model performance through an iterative
mechanism to adapt to the dynamic changes in UAV
networks.

(3) Experiments on multiple public datasets demonstrate
that the proposed method exhibits significant advan-
tages in handling large-scale network data and meets
the real-time and robustness requirements of drone
systems.

2. Related Work
2.1 Semi-supervised Community Detection

Community detection aims to find similar nodes from the
network and group them into a class of clusters, which
includes traditional community detection (TCD) and semi-
supervised community detection (SSCD). TCD finds all
possible communities in the network [8], while SSCD
finds the remaining communities in the network given a
small number of query communities. Different from the
TCD task [11], [12], SSCD focuses on targeted mining
communities with specific structures and properties rather
than identifying the communities exhaustedly [6], [8], [9].
For example, some work [6] scored the nodes in the
network and selected the nodes with high scores as the
seeds. Some work [11] proposed a community-based method
to select subgraphs rather than seed nodes. However,
they all treated the seed/subgraph selection and rewriting
processes as two separate processes, failing to optimise
them jointly and thus achieving unsatisfactory results.

2.2 Graph Supervised Learning

Graph supervised learning (GSL) has been applied in
many fields [14], [15]. Early works focus on predictive
learning [15], [16]. For example, ARVGA [15] learn
to predict missing edges by structural reconstruction.
GraphMAE [16] uses a masking strategy and scaled cosine
loss for feature reconstruction. Nowadays, more attention
has been paid to contrastive-based learning. Some works
concentrate on the development of graph augmentation
strategies [15]-[18]. For example, SPAN [20] augments the
node features matrix from a spectral perspective. Several
recent studies [21]-[23] have explored negative sample-free
methods. In this study, we propose a novel sSGNN using an
overlapping sampling strategy.

2.3 Optimal Transport

Optimal transport theory provides a method for inferring
the correspondence between two distributions and has var-
ious applications in different fields. For example, [24] solves
domain adaptation problems by learning the transport
plan from the source domain to the target domain. [25]
uses optimal transport to handle 3D shape matching and
surface registration problems. Other applications include
generative models [26], [27]. Some works, such as [28],
have proposed an optimal transport-based method for
graph-based regularised empirical distribution. In the field
of community detection, we are the first to use optimal
transport to model the distribution of nodes.

3. Method
3.1 Method Overview
In this section, we describe our proposed iterative

CGNet model for community detection on multi-UAV
collaborative networks. CGNet takes the UAV network



G = (V,€,X) (where V denotes the set of nodes, &
is the set of edges, and X represents the node feature
matrix) and query communities Q = {Q',Q?,...,QM}
as inputs. It outputs the detected communities D =
{D',D?% ..., DN}. As shown in Fig. 2, the model is
mainly composed of two phases: (1) candidate subgraph
matching; (2) candidate subgraph rewriting. For a given
query community Q’, candidate subgraph matching aims
to seek the best matching k-ego nets C = {CY,C?,...,CK}
(a central node along with surrounding within k& hops)
from the network. It first gets a series of samples through
a cover sampling algorithm, while node distances are
then combined with graph distances to complete cross-
layer comparison training. The trained sGNN embedding
is then used to match candidates. Due to its fixed
structure, the community detected by matcher may not
be accurate, so we introduce the subgraph rewriter for
further refinement. Afterwards, we optimise the matcher
and rewriter iteratively by narrowing the embedding
distances between the query community and generated
high-quality communities (rewriting results) as well as
corresponding candidate communities (matching results)
with a regularised contrastive loss.

3.2 Candidate Subgraph Matching

In this subsection, we describe our candidate subgraph
matching component. In detail, we develop a sGNN encoder
to encode individual subgraphs and then compute the
similarities between the subgraphs and query communities.

3.2.1 Self-supervised GNN

We train a self-supervised GNN to encode a graph as
an embedding, capturing the similarities between graphs.
We propose overlapping subgraph sampling. For a query
community, we sample subgraphs with high overlapping
ratio as positive samples, and sample subgraphs with
low overlapping ratio as negative samples for contrastive
learning. For the optimisation loss, we consider not only the
global graph-level distance but also the node-level distance
based on optimal transport.

(1) Overlapping Subgraph Sampling: Generally, the
most basic judgement metric for two similar graphs is that
they have enough overlapping nodes [27]. Specifically, to
construct a sample S, we first randomly select a node n
in a query community ) based on the node connectivity
degree. Then, we connect the selected node to a fixed
number of its neighbouring nodes (we set the fixed number
as 15 via validation). For the constructed sample, we
calculate overlapping ratio of selected subgraph nodes
between the sample S and the query community Q(%)
If the overlapping ratio is above a given threshold (set
as 0.65 in this work), it is taken as a positive sample,
otherwise, it is a negative sample. We continue the sample
construction process until the number of positive samples
as well as that of the negative samples reaches the preset
number.

(2) Graph Convolution: Our sGNN utilises graph
convolution to aggregate the information of neighbouring

nodes in the graph [28]. The I-th layer GNN updates the
node embeddings h as:

hl= GraphConv(A,hl— 1, W) (1)

where A means the adjacent matrix, W represents the
trainable parameters. h0 = X and we use hl,u to represent
node u’s embedding of layer [.

(8) Optimisation Objective: With the positive and
negative samples of the query communities, we train the
sGNN by optimising the following objectives: global graph-
level distance Dy and node-level distance D, based on
optimal transport. In this way, our GNN encoder can
capture not only the global graph properties but also the
local node properties.

Graph-level distance. We can get the graph embedding
by adding a pooling layer over the nodes in the graph. Then
we employ the cosine similarity to obtain the graph-level
distance between the graphs as follows:

79 =" h (2)
ueG
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Dy (Q,S) = 1—m (3)

Optimal transport based node-level distance: Optimal
transport theory can be used to calculate the difference
between two distributions. We use optimal transport
theory [31] to compute the difference in the distribution of
nodes between two graphs. In detail, we concatenate the
representations of nodes (augmented feature [32], [6]) in
all sSGNN convolution layers as their features of node level
to compute the transport cost between two graphs [33].
Formally, the minimal transport cost, also known as
Wasserstein distance Dyy, is considered as the final node-
level distance

Dy (Q,S) = Dw(Xq,Xs)

= rnjin Z Z Ty - cost (EU,EU) (4)

ueEQ veS

where X g and X g, respectively, refer to the node features
of query community @) and subgraph S - T represents a
transport matrix, where T, denotes the transportation
coefficient from u to wv. cost is the cost function that
evaluates the distance between v and v , such as cosine
distance. v is the concat embeddings of node u from all
convolution layers

hu = [hO,u

"'|hi,u|"'|hl,u] (5)

Then we sum the graph-level and node-level distances,
and apply the cross-level loss Lo, for optimisation:

Dis(Q,5) = D1(Q,S) +vD2(Q,5) (6)
Leon = ZDis (Q, Q') + Z max{0,m — Dis (Q, Q’)} (7)
Pos Neg

where Pos denotes the set of positive samples where
community ) is a query community and Q' is a sample
subgraph, Neg denotes the negative samples, and m is the
margin.
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Figure 2. Overview of CGNet. Phase-1 involves selecting potentially relevant UAV communities. The query community is
input, and the sGNN trained by contrastive learning is used to embed and compare different ego-nets. Phase-2 involves
refining these candidate communities to improve accuracy. The gating component makes node adjustments by comparing
the dynamic graph embedding. The sGNN is optimised by regular contrastive loss. Finally, the rewritten completed UAV
subgraph communities are output as final results on the right side.

3.2.2 Similar Subgraph Matching

We match the query community with all the possible
subgraphs from the network G to get the candidate
matching communities ¢ = {C', C%,..., CM*X} based
on the graph embeddings obtained by our sGNN.
We consider the k-ego nets of all nodes as possible
subgraphs. Subsequently, the respective embeddings of
k-ego nets and query community are obtained through
our sSGNN. We choose K nearest neighbors for each
query community Q%(i = [1,M]) according to cosine
similarity and get all the candidate matching communities
C={CY,C? ... CMEY

3.3 Subgraph Filtering

In the candidate subgraph matching, we assume a fixed
subgraph structure (i.e., k-ego net) for efficiency while
sacrificing flexibility and accuracy. Based on the matched
potential candidate subgraphs, we further refine them via
candidate subgraph rewriting. Hence, a gating component
is employed to automatically select nodes to rewrite the
subgraph. We adjust subgraph structures by comparing the
community embedding of nodes placed in the associated
community against the query community and performing
actions (including adding and dropping nodes) until the
occurrence of a STOP signal.

(1) Gating Component: We consider the nodes present
in the candidate community as the state s of gating
component, while the nodes that can be adjusted at step
t are considered as the action a of gating component, as
shown in Fig. 3. At step t, the gating component chooses

Dropping nodes

Candidate community Newly formed community

Figure 3. The overview of writing progress. Green dots
indicate already existing nodes. Red nodes are the
surrounding nodes immediately adjacent to them.

the proper at and transfers from st-1 to st:

st—1=Ut—1=Uue Gt—1u (8)
at =Ut—1UMUt—1=Uu€e Gt— IN(u)nu (9)

Ut-1 refers to the nodes currently in the subgraph, Olft-
1 refers to the nodes not currently in the subgraph but
connected to intra-nodes of subgraph Gt-1 , which may be
added to Gt-1 in the next step, and N (u) indicates the
set of neighbouring nodes surrounding node w.

(2) Dynamic Comparison of Possible Nodes: Consid-
ering that the query community is our main optimisation



target for rewriting, we use the comparison information
between the target query community and the newly-formed
subgraph as the comparison factor. Specifically, we adopt
the query community with the closest graph embedding
distance (as described in Section 3.2) to the candidate
matching community as the target query community Q.
Subsequently, we build possible newly-formed subgraphs
G’ by adding or dropping nodes u if u belongs to U or OU.
Then, we compare the embeddings of the newly-formed
subgraphs with query community @ by:

Ver_F, (ZG’, ZQ) (10)

where Fc(z,y) = Wrylz — y,20y] denotes a comparison
function measuring the embedding closeness and relevance.
W+ is a transformation matrix. © is Hadamard product.
Vi is the obtained comparison vectors, serving as the
environment factors.

The comparison vector is then fed into the gating
component. An MLP (Multilayer Perceptron) network
together with a Softmax function will be applied for scoring
the newly-formed subgraphs. The node u corresponding
to the newly-formed subgraph with the highest score is
selected as the action for the current step is

ay = Softmax (MLPw,_ (Vgr)) (11)

Moreover, we add a special STOP node to the action
set. When the STOP node is selected, rewriting progress is
immediately stopped and we get the generated community.

After reaching the pre-set maximum steps [ or STOP
node, the gating component will obtain a rewritten
community together with the corresponding rewriting
trajectory. After each step of writing, we update the MLP
parameters W, as

T
Waor =W +1ry VW, log(af) - (12)
t=0

where [r stands for the learning rate and V refers to the
gradient. r is the difference of each writing

r= Flscore(G',Q)—Flscore( G, Q) (13)

where () denotes the corresponding query community.

Finally, by rewriting all candidate subgraphs, we
will generate a set of refined communities R =
{R1,R2,...,RN}.

3.4 Iterative Optimisation

We propose a regularised contrastive loss that minimises
the embedding distances between the query community
@ and the generated high-quality communities R as well
as corresponding candidate communities C. Specifically,
referring to Student T-distribution, the distance between
the generated graph R’ and any query community @7
is converted to probability r;;(3 ;7 =1). The loss is

Table 1
Statistics of Datasets. From Left to Right: Nodes Number,
Edges Number, Nodes Number of the Largest
Community, Average Nodes Number of All Communities

#N #E | Crraz | Cavg
Amazon 6926 | 17893 30 | 9.38
DBLP 37020 | 149501 | 16 | 8.37
LiveJournal | 69860 | 911179 | 30 |13.00
YouTube |216544[1393206| 25 | 7.70
Facebook 1826 | 34964 33 |11.20
Twitter 46930 | 784135 | 42 | 9.76

computed as follows:

D=

(1 +||z% - 2

.

’[“ij = - _% (14)
=y (147 - 70 )
r?.
S
Py = (15)
Zj/ Zii'z‘j’
Pij
Lrsg = KL(PIIR) =YY py log== (16
i g y

where Z is the graph embedding obtained by pooling over
node embeddings learned via sGNN and pj; refers to high-
confidence assignments. Similarly, the regularisation loss
LRr—q between graph C* and @’ can be calculated. The
overall regularised contrastive loss function is :

Lieg = Lrg +Lc-q (17)

With the regularised contrastive loss, we further optimise
the sGNN. This allows the generated results of the rewriter
and the matching results of the matcher more compatible
with the query communities. The optimised sGNN is then
re-used in the matching and rewriting processes. Through 1
iterations, we can finally get the unified optimal results D
(i.e., constructed communities at the I-th iteration) with
a well-trained sGNN.

4. Experiments
In this section, we conduct experiments on different
network datasets to validate our model’s ability to mine

local node subgraphs for construction. The detailed data
information is presented in Table 1.

4.1 Experiment Setup
4.1.1 Self-supervised GNN
We conduct experiments on six public network datasets,

including LiveJournal, Amazon, DBLP, YouTube, Twitter,
and Facebook. We download them from the public



Table 2

Experimental Results, Bold Indicates Optimal Results. The Underline Is Sub-Optimal. CGNet Represents Our Original
Version. CGNet-A Is an Enhanced Version Where We Have Improved the Calculation of Node Embedding Distances by
Incorporating Additional Data Features, Such as Node Degree

Method Amazon DBLP Live journal YouTube

F1 |Jaccard | ONMI F1 |Jaccard | ONMI F1 |Jaccard | ONMI F1 |Jaccard | ONMI
BigClam 0.6657 | 0.5637 | 0.0543 | 0.3314 | 0.2036 | 0.0764 | 0.3738 | 0.2984 | 0.1437 | 0.0929 | 0.0568 | 0.0720
ComGAN | 0.6683 | 0.5650 | 0.0712 | 0.3352 | 0.2071 | 0.0413 | 0.3760 | 0.2913 | 0.0025 | 0.1201 | 0.0851 | <le-4
vGraph 0.6704 | 0.5604 | 0.0269 | 0.1080 | 0.0754 | 0.0138 | 0.0411 | 0.0354 | <le-4 | 0.1432 | 0.0872 | <le-4
RaidB 0.6657 | 0.5637 | 0.5435 | 0.3314 | 0.2036 | 0.0764 | 0.3738 | 0.2984 | 0.2437 | 0.1307 | 0.1022 | 0.0351
DSCPCD | 0.6245 | 0.5568 | 0.5586 | 0.2692 | 0.1845 | 0.1087 | 0.3277 | 0.2229 | 0.1759 | 0.2868 | 0.1160 | 0.0690
Bespoke 0.6778 | 0.6229 | 0.6303 | 0.3492 | 0.2943 | 0.1515 | 0.3762 | 0.3123 | 0.2868 | 0.2745 | 0.1723 | 0.0786
Seal 0.6638 | 0.6265 | 0.6268 | 0.3492 | 0.0367 | 0.0006 | 0.3762 | 0.3587 | 0.3425 | 0.2091 | 0.1924 | 0.0934
SLSS 0.7263 | 0.6608 | 0.6466 | 0.3512 | 0.2734 | 0.1575 | 0.4146 | 0.3345 | 0.2697 | 0.3073 | 0.1860 | 0.0854
Clare 0.7541 | 0.6614 | 0.6782 | 0.3949 | 0.3012 | 0.2277 | 0.4587 | 0.3658 | 0.3216 | 0.3098 | 0.2122 | 0.0936
GraphLLM | 0.7020 | 0.6372 | 0.6176 | 0.1404 | 0.1358 | 0.0952 | 0.2031 | 0.1145 | 0.1159 | 0.1698 | 0.1347 | <le-4
CGNet 0.7714]0.6829 |0.7102|0.4259| 0.3275 | 0.2566 | 0.4926 | 0.3973 | 0.3616 | 0.2945 | 0.2203 | 0.0901
CGNet-a | 0.7493 | 0.6426 | 0.7076 | 0.4086 | 0.3131 | 0.2430 | 0.4554 | 0.3624 | 0.3533 |0.3145| 0.2480 | 0.0936

datasets website SNAP for real communities. We excluded
communities whose size exceeded the 90th percentile. We
extract community subgraphs that contain only the nodes
in the community and their outer boundaries. This is
mainly because the downloaded dataset nodes are not all
labelled. Based on the literature [8], we randomly selected
1,000 communities from the full population. This is mainly
a trade-off between most baseline methods and larger
network sizes.

4.1.2 Self-supervised GNN

We compare our model with both TCD methods and SSCD
methods, including (1) BigClam [33], (2) ComGAN [42],
(3) vGraph [5], (4) RaidB [13], (5) DSCPCD [11], (6)
Bespoke [7], (7) Seal [6], (8) SLSS [8], (9) Clare [9] and (10)
GraphLLM [36].

Methods 1-5 are TCD baselines while Methods 6-9 are
state-of-the-art SSCD baselines. Method 10 is notable for
its ability to infer processing graphs from a small number
of samples.

4.1.3 Fvaluation Metrics

We use the most commonly used metrics F'1 score, Jaccard
score, and ONMI to evaluate the model performance [38].
Given M constructed communities R and N ground truth
communities Qj , we compute the performance score as
follows:

5y s (1. @7) + ;;miaxmw» (18)

where ¢ can be the F1, Jaccard [38] and ONMI [39]
functions as described in the technical content.

4.2 Performance Comparison

Table 2 and Table 3 show the outcomes of our model on
popular datasets as well as the large scale graph. As we
can see, our proposed CGNet generally achieves the best
performance in terms of all metrics. The reason could
be that these traditional approaches aim at clustering all
nodes in a network rather than detecting a specific type of
community. GraphLLM performs slightly inferiorly due to
its limited understanding of graph structures. Moreover,
it can be observed that CGNet consistently outperforms
all the SSCD models by a large margin, which shows
the effectiveness of our proposed method. We believe the
reasons are two-fold.

1) Our proposed sGNN with contrastive loss including
graph-level distance and optimal transport distance that
can capture the graph properties at both graph level
and node level.

2) In our gating component, the actions are decided by
constantly comparing the newly-formed graph with the
query community.

4.3 Semi-supervised Detection

Recall that the primary objective of this study is to
detect communities of interest given a limited number
of query community samples. We evaluate the detection
performance of our model across various scales of query
communities. As shown in Fig. 4, the performance improves
consistently across all four datasets as the number of input



Table 3
Experimental Results on Large Scale Graph

Method Facebook Twitter
F1 |Jaccard | ONMI F1 |Jaccard | ONMI

BigClam 0.1404 | 0.1097 | 0.0464 | 0.0299 | 0.0431 | 0.0264

ComGAN | 0.0446 | 0.0139 | 0.0466 | 0.0120 | 0.0540 | 0.0233

vGraph 0.1241 | 0.0152 | <le-4 | <le-4 | <le-4 | 0.0403

RaidB 0.1435 | 0.1063 | 0.0550 | 0.1496 | 0.1019 | 0.0563

DSCPCD | 0.1455 | 0.1081 | 0.0574 | 0.1370 | 0.1057 | 0.0776

Bespoke 0.1503 | 0.1385 | 0.0664 | 0.1587 | 0.1330 | 0.0885

Seal 0.1581 | 0.1403 | 0.1083 | 0.1701 | 0.1633 | 0.1080

SLSS 0.1593 | 0.142 | 0.1256 | 0.1705 | 0.1623 | 0.1107

Clare 0.1746 | 0.1477 | 0.1370 | 0.2577 | 0.2009 | 0.1163

GraphLLM | 0.0837 | 0.1307 | <le-4 | 0.1532 | 0.0913 | <le-4

CGNet 0.1961|0.1538 |0.1771 | 0.2603 | 0.1998 | 0.1187

CGNet-a 0.1957 | 0.1534 | 0.1726 |0.2709 | 0.2102 | 0.1259
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Figure 4. Effect of different number of query communities. Wider

query communities increases. Notably, with only 10 query
communities, the model achieves results comparable to
what many models require with full input sets (Table 4). It
indicates that our model is capable of learning sufficiently
rich information from a small number of community
structures through self-supervised learning.

4.4 Discussion

We conduct experiments about GNN considering the
importance of GNN in our model.

means better performance.

4.4.1 Effect of Different GNN Convolution Methods

We test different graph neural network convolution types
to achieve optimal results, including GCN, GIN, Sage,
and GAT [15], [33], [9], [30]. To be fair, we keep the
number of network layers uniform at 2. As shown in
Table 4, our algorithm achieves high performance under
most graph convolutional networks. GAT achieves the
best performance in all cases. Among them, the optimal
results are consistently achieved on Amazon and DBLP,
which consist of fewer nodes and are suitable for the
computation of GAT under the attentional mechanism
computation, however, the computation of GAT is more



Table 4
Performance with Different Convolution Types

Type Amazon DBLP Livejournal
F1 Jaccard | ONMI |F1 Jaccard | ONMI | F1 Jaccard | ONMI
GCN [0.7424 |0.65 0.6703 |0.3869 [0.2902 |0.2173 |0.4888 |0.3925 |0.3611
GIN ]0.7514 |0.6565 |0.6721 [0.3867 |0.2877 |0.2133 |0.4949|0.3966 |0.3614
SAGE|0.7442 |0.6514 |0.6688 [0.3807 [0.2857 |0.2018 |0.4795 |0.3835 |0.3411
GAT |0.7714|0.6829 |0.7102|0.4259|0.3275 | 0.2566 | 0.4926 |0.3973 |0.3616
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Figure 5. Effect of different GNN layer numbers.
Table 5
Ablation Study of Modules on F'1 Score
Method Amazon | DBLP | Livejournal | YouTube | Twitter | Facebook
CGNet 0.7714 |0.4259| 0.4926 0.3145 [0.1961 | 0.2709
- w/o Comparing | 0.6344 | 0.3115 0.318 0.2931 | 0.1487 | 0.2347
- w/o OT.Dis 0.6047 | 0.303 0.3154 0.2477 | 0.1184 | 0.1257
- w/o Graph.Dis | 0.7092 | 0.3187 0.3221 0.2964 | 0.1243 | 0.2140
- w/o sGNN 0.5232 | 0.2526 0.2782 0.2432 | 0.1031 | 0.1175

complicated under the mega node data of Livejournal, so
the final performance is affected. Considering the node size
of UAV network, GAT can be reasonably adapted to the
performance calculation under medium to large scale. So
we finally adopt GAT as the main method.

4.4.2 Effect of Different GNN Layer Numbers

Following existing methods [43]-[45], we examine the
influence of GNN layer numbers on performance. The
comparison with different choices of layer number is
depicted in Fig. 5. The trend on different datasets is similar.
Therefore, we set 2 for all datasets during experiments.

4.5 Efficiency Study

We evaluate the efficiency of CGNet by directly comparing
its inference time with that of all baselines, as existing
works [46]-[49]. In the evaluation, all parameters of the
baselines were set according to their original papers. Fig. 6
shows the performance (F'1 score) and the runtime (in

seconds). CGNet also takes only about 1,000 s to complete
most of the tests. It also outperforms other faster models
in terms of performance (F1 score).

4.6 Ablation Study

In this subsection, we conduct ablation experiments to
study the effectiveness of each module in CGNet as
existing research set [50]-[53]. As shown in Table 5,
removing iterative optimisation between matching and
rewriting (w/o Iteration) leads to a slight performance
drop. Removing the environment factor of comparison
with query communities (w/o Comparing) will largely
impair the performance. If we remove the whole rewriting
model and only keep the candidate subgraph matching
module (i.e., w/o Rewriting), we can also obtain excellent
performance. While removing optimal transport distance
(i.e., w/o Rewriting & Optimal Tran.) and graph-level
distance loss (i.e., w/o Rewriting & Graph-level Dis.), the
model performance decreases by around 3.1% to 10.7% on
F1 score. Removing both graph level distance and optimal
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transport distance, namely without optimizing sGNN (w/o
sGNN) will lead to substantial performance drops (around
10-30%). It demonstrates the importance of sGNN for
graph encoding in SSCD.

4.7 Case Study

We conduct a case study to evaluate the performance
of our model following existing paper [54]-[57] As shown
in Fig. 7, the model detects communities from real
networks. On the Amazon dataset, the model successfully
identifies the community nodes of interest from the
surrounding unrelated nodes. For more complex networks
such as DBLP, LiveJournal, and YouTube, the model
accurately detects nodes that are close to the ground-
truth communities. Even though there are unrelated nodes
interspersed in the complex network, our model can still
accurately detect them. This robustness can be attributed
to the model’s precise community matching and rewriting
capabilities. It also demonstrates the model’s scheduling
ability in the face of complex real-time environments.

5. Conclusion

This study addresses the key challenge of community
construction in dynamic UAV networks by proposing a

semi-supervised detection method based on iterative cross-
layer graph contrastive learning. By integrating graph-
level topological features with node-level collaboration
relationships, and combining dynamic contrastive loss
functions with an incremental optimisation mechanism,
experiments have shown that this method achieves a
community detection accuracy of 77% on large-scale
network datasets (an improvement of 8% compared to
traditional graph embedding methods), while reducing
network reconstruction latency to 1.2 s per hundred
nodes. These breakthroughs provide a new paradigm
for real-time decision-making in critical scenarios for
UAV fleets, such as military reconnaissance and precision
agriculture. The semi-supervised mechanism (requiring
less than 10% labelled data) significantly enhances
engineering applicability. Future research will explore
distributed community optimisation under a federated
learning framework to meet the collaborative control needs
of ultra-large-scale heterogeneous UAV swarms.
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