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TIME-OPTIMAL TRAJECTORY PLANNING

METHOD OF MANIPULATOR BASED

ON NMSDBO ALGORITHM
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Abstract

In the trajectory planning process of a robotic arm, it is essential to

ensure that the driving device meets the actual load requirements.

Consequently, the selection of joint velocities and accelerations tends

to be relatively conservative. This cautious approach results in an

extended duration required to complete a set of actions, ultimately

hindering the full utilisation of the robotic arm’s continuity and

stability based on its motion velocity and acceleration. To address

the optimisation problem concerning the velocity and acceleration

of various joints in a robotic arm, this paper focuses on the

IRB2600 robotic arm as the subject of study. We introduce a 3-5-3

polynomial interpolation trajectory planning method within joint

space and propose a time-optimal trajectory planning method based

on a new multi-strategy improved DBO (NMSDBO) algorithm.

This algorithm integrates the golden sine strategy, and incorporates

adaptive T -distribution perturbation, which enhances the update of

global optimal positions and improves both the accuracy and speed

of the trajectory optimisation process. By comparing with WOA,

HHO, SSA, and DBO algorithms in six benchmark functions, it

is proved that the proposed NMDBO has good performance and

robustness. The simulation results show that the time for each

joint to complete the action is shortened from the initial set of 12

s to 5.5548 s, which achieves the effect of time optimisation and

maintains the smooth and compliant motion of the manipulator.
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1. Introduction

Robot trajectory planning serves as the foundation for
controlling manipulator movement, the quality of the
trajectory planning has an essential influence on the quality
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of the operation [1], [2]. Furthermore, as a prerequisite for
trajectory tracking control, effective trajectory planning
influences various factors such as accuracy, motion
efficiency, smoothness of movement, and energy consump-
tion [3], [4]. The trajectory planning can be categorised into
Cartesian space trajectory planning and joint space trajec-
tory planning according to the planning space. Within joint
space trajectory planning, methods can be further divided
into general trajectory planning and optimal trajectory
planning depending on whether an optimisation approach
is employed to enhance performance. Joint space general
trajectory planning refers to the process of maneuvering
each joint of a robotic arm according to a specified planning
methodology within the robot’s joint space. This process
involves calculating the functional relationships among
joint angle, angular velocity, angular acceleration, and
time for each individual joint. Optimal trajectory planning
is a single objective optimisation based on time, energy,
impact, etc., or a multi-objective trajectory optimisation
that integrates various objectives based on specific require-
ments, to further improve the performance of trajectory
planning [5]. Currently, research on control algorithms for
optimising robotic arm time is relatively in-depth, aiming
to shorten operating time and improve work efficiency.

The primary optimisation algorithms employed for
time-optimal trajectory planning problems encompass a
range of techniques, including dichotomy, particle swarm
optimisation (PSO), the grey wolf optimiser (GWO)
algorithm, the sparrow search algorithm (SSA), the whale
optimisation algorithm (WOA), the butterfly optimisation
algorithm (BOA), as well as sine-cosine algorithms
(SCA) [6] etc. Fan et al. [7] designed a time-optimal
trajectory planning algorithm based on the improved
GWO algorithm, they optimised the time parameters of
the quintic polynomial, and applied it in the camellia
fruit picking manipulator. Zhang et al. [8] employed cubic
spline curve to establish the trajectory of manipulator
in joint space, combined with the cosine annealing
algorithm to design adaptive step factor, and realised time-
optimal planning based on enhanced SSA. Zhao et al. [9]
utilised quintic B -spline interpolation to construct the
manipulator’s trajectory within joint space, and developed
an improved WOA that combines the PSO with the whale
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optimisation technique (which is also referred as the hybrid
whale PSO algorithm in [10]). This innovative method
optimised trajectory time, resulting in more efficient
operation of the manipulator. Zhou et al. [11] employed
a polynomial interpolation algorithm to construct the
trajectory of a six-degree-of-freedom manipulator. They
enhanced the traditional BOA and applied it to optimise
the time of the manipulator’s trajectory. This approach
not only effectively reduces the motion time of the
manipulator but also ensures smooth operation during
actual production processes. Pan et al. [12] proposed a
time-optimal polynomial interpolation trajectory planning
algorithm based on an improved sine-cosine algorithm,
which dynamically adjusts the balance factor according
to fitness levels, thereby optimising the local development
capability of the algorithm. Patle et al. [13] conducted
trajectory planning based on an S -shaped velocity curve
and employed PSO to determine the optimal time
parameters for this curve. Although extensive research has
been conducted on the trajectory optimisation of robotic
arms, they still face problems such as single or high
polynomial interpolation orders, complex calculations, slow
convergence speed of the optimisation algorithms, limited
ability to explore the global optimal position, and long
optimisation time.

Xue et al. [14] introduced the dung beetle optimiser
(DBO) algorithm, which is inspired by the behaviour of
beetles. This algorithm effectively combines characteristics
of global exploration and local development, and it is
known for its rapid convergence and high solution accuracy.
Recently, scholars have made significant advancements in
the algorithm. Pan et al. [15] introduced the MSADBO
algorithm, which integrates an enhanced sine algorithm
by employing Bernoulli chaotic mapping for initialisation
and incorporating an adaptive Gaussian Cauchy mutation
perturbation strategy. Guo et al. [16] proposed the MIDBO
algorithm, which enhances the acceptance rate of optimal
solutions by thief beetles. Additionally, it incorporates a
perturbation strategy derived from the SSA and employs
Cauchy Gaussian mutation techniques. Li et al. [17]
proposed the IDBO algorithm, which initialises the
population by integrating Fuch chaos and reverse learning
strategies. This approach incorporates adaptive step size
and convex lens imaging techniques, while also introducing
a random difference mutation strategy. Research has
demonstrated that the enhanced DBO algorithm exhibits
superior optimisation capabilities and a faster convergence
rate when compared to other path planning methodologies.
Nevertheless, these advancements still face issues such as
uneven distribution of population initialisation, imbalance
between global exploration and local exploitation, and
susceptibility to getting stuck in local optima, which can
affect convergence performance.

In this paper, the motion trajectory is divided
into three segments by combining the advantages of
cubic and quintic trajectory planning, and the 3-5-3
segmented trajectory planning is implemented through
a combination of cubic, quintic, and cubic polynomials.
To tackle the challenge of optimising time parameter,
we have designed a NMSDBO algorithm for trajectory

Figure 1. IRB2600 manipulator.

optimisation that achieves time-optimal solutions while
adhering to kinematic constraints. The algorithm converts
constrained optimisation problems into unconstrained
ones by incorporating penalty functions. By integrating
the golden sine strategy and introducing adaptive T -
distribution perturbations, the rolling behaviour of the
beetle optimisation algorithm is enhanced, along with the
evolution of the global optimal position. This approach
significantly improves both the accuracy and speed of the
optimisation process.

2. Kinematics Model and Trajectory Planning of
Manipulator

2.1 Kinematics Model of IRB2600 Manipulator

Industrial robots consist of a variety of intricate
components, the primary elements include mechanical
arms, end-effectors, motor systems, sensors, and various
associated accessories. As illustrated in Fig. 1, using
ABB’s IRB2600 industrial robot as a case study [18], the
kinematic modelling of industrial robots is presented in
detail. In the 1950s, Denavit and Hartenberg introduced
the Denavit-Hartenberg (DH) method, which remains a
widely utilised framework for robot description. The DH
method is categorised into two types: the standard DH
method (SDH) and the modified DH method (MDH).
The former establishes the coordinate system at the distal
end of connecting rod, while the latter defines it at the
proximal end. Due to its enhanced adaptability, this paper
adopts the MDH approach for modelling the IRB2600
manipulator.
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Table 1
MDH Parameter Table of Manipulator

Connecting rod αi−1 ai−1 di θi

1 0 0 d1 (445) θ1

2 −90
◦

a1 (150) 0 θ2 + 90
◦

3 0 a2 (−700) 0 θ3

4 90
◦

a3 (−115) d4 (795) θ4

5 −90
◦

0 0 θ5

6 90
◦

0 d6 (85) θ6

Figure 2 illustrates the coordinate system of the
manipulator, which has been established in accordance
with the MDH convention. Based on the structure of
the IRB2600 depicted in Fig. 2, the corresponding MDH
parameters can be derived and are presented in Table 1.
In the table, αi−1, ai−1, di, and θi represents the torsion
angle of the connecting rod, the length of the connecting
rod, the offset of the connecting rod and the joint angle,
respectively. Among these parameters, the torsion angle
αi−1 denotes the rotation angle between the adjacent joint
axes, the length ai−1 signifies the vertical distance between
the adjacent axes, the offset distance di indicates the
translation distance between the previous joint and the
current joint axis, and the joint angle θi represents the angle
formed by the common vertical line of the connecting rod
before and after the translation and the rotation around
the joint axis.

2.2 3-5-3 Polynomial Trajectory Planning

The cubic polynomial interpolation method for trajectory
planning in joint space has gained widespread adoption
due to its straightforward computational requirements.
However, the trajectories generated by this method do
not impose constraints on angular acceleration, which
can lead to abrupt changes in the manipulator’s joint
angular acceleration. This phenomenon may result in
mechanical vibrations, ultimately diminishing both the
service life and control accuracy of the servo motor.
Based on the cubic polynomial, the quintic polynomial
enhances the constraints on joint angular acceleration and
mitigates potential damage to the joint motor due to
its higher order. However, employing quintic polynomial
interpolation for each trajectory significantly increases
computational demands. Therefore, we propose a 3-5-
3 piecewise polynomial interpolation trajectory planning
algorithm that integrates the advantages of both cubic and
quintic trajectory planning, thereby achieving a balanced
planning effect.

The 3-5-3 polynomial trajectory planning method
divides the motion trajectory into three distinct phases,
taking into account joint motion dynamics and smoothness
requirements as follows.

Figure 2. IRB2600 manipulator coordinate system.

(1) Initial phase (cubic polynomial), which is designed to
swiftly attain an intermediate velocity while minimising
acceleration jerk;

(2) Middle phase (quintic polynomial), which imposes
stringent constraints on joint angular acceleration to
ensure a smooth motion profile;

(3) Final phase (cubic polynomial), which gradually
decelerates to achieve zero velocity. The for-
mula for the 3-5-3 piecewise polynomial is as
follows
θ1 (t) = a10 + a11t+ a12t

2 + a13t
3

θ2 (t) = a20 + a21t+ a22t
2 + a23t

3 + a24t
4 + a25t

5

θ3 (t) = a30 + a31t+ a32t
2 + a33t

3

(1)

where, θ1 (t), θ2 (t), and θ3 (t) represents the joint angles
at the time t for trajectory of the first, second and third
segments, respectively. The coefficients a1i, a2i, and a3i
correspond to the first, second, and third trajectories,
respectively.

The velocity expression of 3-5-3 polynomial trajectory
planning as follows


θ̇1 (t) = a11 + 2a12t+ 3a13t

2

θ̇2 (t) = a21 + 2a22t+ 3a23t
2 + 4a24t

3 + 5a25t
4

θ̇3 (t) = a31 + 2a32t+ 3a33t
2

(2)

where, θ̇1 (t), θ̇2 (t), and θ̇3 (t) denote the joint
velocity at the first, second, and third trajectories,
respectively.
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The acceleration expression of 3-5-3 polynomial
trajectory planning as follows

θ̈1 (t) = 2a12 + 6a13t

θ̈2 (t) = 2a22 + 6a23t+ 12a24t
2 + 20a25t

3

θ̈3 (t) = 2a32 + 6a33t

(3)

where, θ̈1 (t), θ̈2 (t), and θ̈3 (t) denote the joint accel-
eration at the first, second, and third trajectories,
respectively.

In the context of 3-5-3 polynomial trajectory planning,
to ensure the smoothness of the trajectory, it is necessary to
set the constraints of angle, angular velocity, and angular
acceleration at the connection of the three trajectories.
This procedure requires solving 14 sets of 4 equations to
determine 14 unknown coefficients, which will ultimately
define the specific form of the polynomial. The detailed
solution process is outlined as follows.

The joint angle equation, derived from the angular
information, is as follows

θ1 (t1) = θ2 (0)

θ2 (t2) = θ3 (0)

θ3 (t3) = θ3

θ1 (0) = θ0

θ2 (0) = θ1

θ3 (0) = θ2

(4)

where, the equations are formulated based on the angle
continuity of the three-segment trajectory, incorporating
the known initial and final joint angles θ0 and θ3, as well
as the interpolation points θ1 and θ2.

The joint velocity equation formulated based on the
velocity information at the interpolation point is as
follows 

θ̇1 (t1) = θ̇2 (0)

θ̇2 (t2) = θ̇3 (0)

θ̇3 (t3) = 0

θ̇1 (0) = 0

(5)

where, the equations are formulated based on the
continuity of the angular velocity of the two interpolation
points of the three-segment trajectory. It is also given
that both the initial and final joint angular velocities are
zero.

By integrating (1) through (5), we can derive the
expressions for the unknown coefficient matrix a, the joint
interpolation angle matrix b, and the three-stage trajectory
time as follows

Aa = b (6)

where,

A =



t1
3 t1

2 t1 0 0 0 0 0 0 −1 0 0 0 0

3t1
2 2t1 1 0 0 0 0 0 −1 0 0 0 0 0

6t1 2 0 0 0 0 0 −2 0 0 0 0 0 0

0 0 0 0 t2
5 t2

4 t2
3 t2

2 t2 1 0 0 0 −1

0 0 0 0 5t2
4 4t2

3 3t2
2 2t2 1 0 0 0 −1 0

0 0 0 0 20t2
3 12t2

2 6t2 2 0 0 0 −2 0 0

0 0 0 0 0 0 0 0 0 0 t3
3 t3

2 t3 1

0 0 0 0 0 0 0 0 0 0 3t3
3 2t3 1 0

0 0 0 0 0 0 0 0 0 0 6t3 2 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0


(7)

b =
[
0 0 0 0 0 0 θ3 0 0 θ0 0 0 θ2 θ1

]T
(8)

Through (6) to (8), the coefficient matrix a can be
derived as follows

a = A−1b =
[
a13 a12 a11 a10 a25 a24 a23 a22 a21 a20

a33 a32 a31 a30

]T
(9)

The 3-5-3 piecewise polynomial function can be derived
by substituting the coefficient matrix a back into (1).

3. Time-optimal Trajectory Planning Algorithm

3.1 Mathematical Model of Time-optimal
Trajectory Planning

It can be observed from (7) that the objective function is
solely dependent on time t. The motion process of the robot
within the joint space is segmented into three interpolation
trajectories, which are subsequently fitted using a 3-5-3
piecewise polynomial. By aiming to minimise the total time
as the optimisation goal, the total time parameter for the
3-5-3 polynomial trajectory planning is denoted by Γ, and
the objective function for time-optimal trajectory planning
is presented in (10)

Γ = min(ti1 + ti2 + ti3) (10)

where, ti1, ti2, and ti3 denote the three stages
motion duration for the i -th joint in the 3-5-3 polynomial
trajectory planning.

After formulating the objective function, the maximum
angular velocity and maximum angular acceleration for
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each joint rotation are employed as constraints. The
constraint function is established as illustrated in (11)

∣∣∣θ̇i∣∣∣ ≤ θ̇max∣∣∣θ̈i∣∣∣ ≤ θ̈max

(11)

where,
∣∣∣θ̇i∣∣∣ denotes the absolute value of angular velocity for

the i -th joint during motion, θ̇max signifies the maximum

allowable angular velocity,
∣∣∣θ̈i∣∣∣ represents the absolute

value of angular acceleration for the i -th joint while
in motion, and θ̈max indicates the maximum permissible
angular acceleration. The constraint conditions necessitate
the determination of the maximum angular velocity and
acceleration for each joint. This involves calculating the
peak values of both the first and second derivatives of the
interpolation function.

Addressing the time-optimal constraint problem
directly will result in high complexity. To effectively
simplify the solution process, we employ a penalty function
strategy to transform the constraint issues related to
velocity and acceleration of the manipulator into an
unconstrained problem, thereby mitigating the complexity
associated with optimisation challenges. The constraint
functions presented in (10) through (11) are reformulated
into an unconstrained function as shown in (12)

Γ = min (ti1 + ti2 + ti3) + σ ×

(
3∑

i=1

max
(
0,
∣∣∣θ̇i∣∣∣− θ̇max

)2
+

3∑
i=1

max
(
0,
∣∣∣θ̈i∣∣∣− θ̈max

)2)
(12)

where, σ denotes the penalty factor coefficient with a value
of 1010.

3.2 Dung Beetle Optimiser Algorithm

The DBO is a single-objective global optimisation
algorithm introduced by Xue et al. [14] in 2022. Drawing
inspiration from the distinctive behaviours of dung beetles,
this algorithm emulates various activities such as rolling,
dancing, foraging, stealing, and breeding within their
natural environment. It incorporates five unique location
update strategies that not only facilitate rapid convergence
of the algorithm but also ensure solution accuracy.
Furthermore, it enables the identification of both global
and local optimal solutions. The mathematical model is
formulated based on the five behavioural rules of rolling,
dancing, breeding, foraging, and stealing as observed in the
dung beetle algorithm.

3.2.1 Ball Rolling Behaviour

The ball rolling behaviour of dung beetles can be
categorised into barrier-free mode and obstacle mode. In
the absence of obstacles during their movement, dung
beetles utilise light intensity to determine a path for both
position and direction while rolling. As they engage in this

rolling activity, the position of the dung beetle is updated
as described in (13)

xi (t+ 1) = xi (t) + α× k × xi (t− 1) + b×
∣∣xi (t)−XW

∣∣
(13)

where, xi (t) represents the position information of the first
dung beetle in the i -th iteration, t denotes the current
number of iterations, α signifies the coefficient of natural
factors (such as wind and uneven terrain), with a value of
either -1 or 1, k indicates the deflection coefficient, typically
set at 0.1; b is a constant within a specified range, usually
taken to be 0.3, and finally,XW represents the global worst
position.

3.2.2 Dancing Behaviour

When the dung beetle encounters obstacles on the way
forward, it must reorient itself by performing a dance. The
algorithm employs the tangent function to determine a new
direction, and the position update is illustrated in (14)

xi (t+ 1) = xi (t) + tan (θ) |xi (t)− xi (t− 1)| (14)

where, θ represents the deflection angle, θ ∈ (0, π). It is
important to note that when θ = 0, π

2 , π, the position of
the dung beetle remains unchanged. This indicates that
the position update of the dung beetle is closely linked
to both its current position xi (t) and historical positional
information xi (t− 1).

3.2.3 Breeding Behaviour

In nature, dung beetles must take into account the living
environment of their offspring and will seek out safe and
suitable habitats that promote the survival of young dung
beetles. Building on this understanding, the boundary
restriction strategy of (15) is proposed to effectively
simulate the breeding offspring behaviour of dung beetlesLb∗ = max (X∗ × (1−R) ,Lb)

Ub∗ = min (X∗ × (1 +R) ,Ub)
(15)

R = 1− t

Tmax
(16)

where, Lb∗ and Ub∗ denote the lower and upper limits of
the spawning area, while X∗ indicates the current local
optimal position. Additionally, Lb and Ub represents the
lower and upper bounds of the optimisation problem, and
Tmax is the maximum number of iterations.

The conceptual diagram illustrating the boundary
processing strategy is presented in Fig. 3. The current local
optimal position is denoted as X∗, while the surrounding
black dots represents the breeding balls. The boundary
parameters Lb∗, Ub∗, Lb, and Ub are indicated by red dots
within the conceptual map.

After a dung beetle identifies the spawning area, it
engages in breeding behaviour, with each dung beetle
producing only one egg per iteration. Due to the dynamic
adjustment of the spawning area, the position of the small
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Figure 3. Boundary selection strategy model.

dung beetle during the feeding process remains uncertain.
The update mechanism for each dung beetle’s breeding
ball position is determined according to (17)

xi (t+ 1) = X∗ + b1 × (xi (t)− Lb∗) + b2 × (xi (t)− Ub∗)
(17)

where, xi (t) denotes the positional information of the i -th
breeding dung beetle at the t-th iteration, while b1 and b2
represents random vectors of size 1×D.

3.2.4 Foraging Behaviour

The optimal foraging range Lbb and Ubb are calculated
using (17), while the foraging position of dung beetle is
determined by (18)Lbb = max

(
Xb × (1−R) ,Lb

)
Ubb = min

(
Xb × (1 +R) ,Ub

) (18)

xi (t+ 1) = xi (t)+C1×
(
xi (t)− Lbb

)
+C2×

(
xi (t)− Ubb

)
(19)

where, xi (t) represents the position information of the i -th
foraging dung beetle during the t-th iteration, Xb denotes
the global optimal position, while Lbb and Ubb signify the
lower and upper limits of the foraging area of the dung
beetle, respectively. Additionally, C1 is a random number
that follows a normal distribution, and C2 is a random
vector with values ranging between 0 and 1.

3.2.5 The Theft Behaviour

In the dung beetle population, certain individuals will pilfer
food from those located near the globally optimal position
Xb, and their position updates are calculated according to
(20)

xi (t+ 1) = Xb + S × g ×
(
|xi (t)−X∗|+

∣∣xi (t)−Xb
∣∣)
(20)

where, xi (t) represents the position information of the i -
th stealing dung beetle during the t-th iteration, g is a

random vector of 1 × D dimension that follows a normal
distribution, and S is a constant value set at 0.5.

3.3 Trajectory Optimisation Method Based on
NMSDBO Algorithm

This paper highlights specific limitations of the DBO
algorithm, including suboptimal performance in ball rolling
behaviour and a restricted ability to explore globally
optimal positions during the later stages of execution.
In response to these issues, we propose a new multi-
strategy improved dung beetle optimisation algorithm. By
incorporating multiple strategies, this enhanced version
improves both the rolling behaviour inherent in dung beetle
optimisation and its ability to identify global optimal
positions, thereby increasing overall efficiency and accuracy
of the algorithm.

3.3.1 The Golden Sine Strategy Integrated for Improving
the Ball Rolling Behaviour

In the DBO algorithm, the ball rolling behaviour of
dung beetles leads the entire population and plays a
crucial role in enhancing both the global search capability
and convergence speed of the algorithm. However, this
rolling ball behaviour primarily explores optimal solutions
through linear movement, which results in an incomplete
exploration of the problem space and consequently low
global search efficiency. To improve the global search ability
of the algorithm, we introduce the golden sine strategy
into this rolling behaviour. The Golden sine algorithm
(Golden-SA), proposed by Tanyildizi et al. in 2017 [19], is a
novel optimisation technique that employs a sine function
combined with a golden section coefficient to enhance
search performance. This approach demonstrates strong
capabilities for global searching.

According to the research conducted by Tanyildizi
et al. adjusting the amplitude and frequency of the sine
wave enhances the algorithm’s efficiency in exploring
local regions of complex optimisation problems, thereby
improving solution accuracy. Consequently, integrating
the golden section with the sine function enables faster
identification of optimal values while mitigating the risk of
the algorithm converging to local optima. By substituting
the individual update equation during the ball rolling
behaviour phase with a golden sine strategy, significant
optimisation can be achieved in updating individual
positions within this context. The rolling ball behaviour
described in (13) is replaced by the mathematical model
based on golden sine as presented in (21)

xi (t+ 1) = xi (t)× |sin (r1)| − r2 × sin (r1)× |c1
× Xb − c2 × xi (t)

∣∣ (21)

where, xi (t) represents the position of the i -th dung beetle
in the population at the t-th iteration. The variable r1
denotes the random number with a value of 0 ∼ 2π,
the variable r2 indicates another random number with
a value of 0 ∼ π, and Xb signifies the global optimal
position. Additionally, c1and c2 are referred to as golden
sine coefficients, which are calculated as follows
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c1 = π × (1− τ)− π × τ, c2 = π × τ − π × (1− τ) (22)

where, τ = (
√
5− 1)/2 is the golden section coefficient.

By introducing the golden sine guidance mechanism,
the population range is precisely defined, and the optimal
search area is established. This mechanism directs the
entire optimisation process and significantly enhances the
algorithm’s performance. Simultaneously, the search area
is reduced according to the golden ratio, allowing for a
rapid convergence of the population towards the optimal
region, thereby accelerating convergence speed.

3.3.2 Adaptive T-Distribution Perturbation

The behaviours of rolling, dancing, foraging, and stealing
in each iteration of the DBO algorithm are centered
around the global optimal position. Consequently, this
global optimal position plays a crucial role within the
algorithm. However, the DBO algorithm does not fully
leverage this global optimal position. Drawing inspiration
from [20], we propose that a T -distribution disturbance
factor can be employed to randomly perturb the global
optimal position, thereby preventing the algorithm from
converging prematurely to local optima. The distribution
characteristics of the T -distribution disturbance factor are
contingent upon its degrees of freedom n. Specifically,
when the degrees of freedom n = 1, it resembles a
Cauchy distribution which facilitates broader exploration;
conversely, as it increases towards infinity, it approximates
a Gaussian distribution that enhances local search
capabilities [21]. By selecting an appropriate degree of
freedom to construct the T -distribution operator and
integrating it into the DBO algorithm, we can effectively
utilise both Cauchy mutation and Gaussian mutation
advantages.

To enhance the mutation probability of the global
optimal individual and improve the algorithm’s ability to
escape from local optima during previous iterations, it is
observed that the algorithm tends to concentrate around
the optimal solution as the number of iterations increases.
In this context, we introduce an adaptive T -distribution
disturbance factor based on an exponential function, as
proposed in [22]

T = T

 1

m
× exp

(
ln
(
itermax

5

)
itermax

5

)iter
 (23)

where, m represents the scaling factor, which is set to 10,
iter denotes the current number of iterations,and itermax

is the maximum number of iterations.
For the globally optimal individual Xb, the perturba-

tion derived from the adaptive T-distribution is as follows

xnew = Xb +Xb × T

 1

m
× exp

(
ln
(
itermax

5

)
itermax

5

)iter
(24)

where, xnew represents the individual a solution perturbed
by an adaptive T-distribution. During the initial stages
of iteration, the degrees of freedom for the adaptive

T -distribution approach 0.1. At this point, there is a
significant probability that variables drawn from the
T -distribution will yield extreme values far from zero.
This characteristic enhances the global search capability
of the algorithm and helps prevent it from converging
prematurely to local optimal solutions in these early
iterations. As iterations progress into later stages, the
degrees of freedom for the adaptive T -distribution
tend toward infinity, resembling a Gaussian distribution.
Consequently, perturbations applied to individuals become
more moderate, which facilitates the algorithm’s ability
to identify local optimal solutions and improves its
convergence speed during this phase.

Not every perturbation leads to improved outcomes.
Consequently, superior individuals are preserved according
to a greedy selection criterion. The specific methodology is
outlined in (25)

Xb =

Xnew, f (Xnew) < f
(
Xb
)

Xb, others
(25)

In the equation, f (Xi) represents the fitness function.
By comparing the fitness values before and after the
disturbance, we can select the superior individual as the
new global optimal individual.

As illustrated in Algorithm 1, on the basis of 3-5-3
polynomial trajectory planning, the NMSDBO algorithm is
employed to compute the optimal time parameters, thereby
enabling smoother operation of the manipulator and
minimising movement duration. Initially, the trajectory
time parameters for each joint of the manipulator are
optimised individually. Subsequently, a comparison is made
among the trajectory durations of each joint within the
same motion phase, with the maximum value being selected
as the time parameter for 3-5-3 polynomial trajectory
planning. Ultimately, this process yields the shortest
operational trajectory for the manipulator throughout its
entire running cycle.

4. Simulation Experiment and Analysis

4.1 Performance Analysis of NMSDBO Algorithm

To assess the development capability, exploration capacity,
and the ability to escape local optimal solutions of the
NMSDBO algorithm, this paper selects six benchmark
functions, which include both unimodal and multimodal
functions. Specifically, F1 to F3 are unimodal functions
characterised by a single local extremum, thereby
demonstrating the global development capability of various
optimisation algorithms. In contrast, F4 to F6 are
multimodal functions featuring multiple local extrema;
these serve to illustrate the exploration capacity of different
optimisation algorithms as well as their ability to transcend
local optimal solutions. A detailed description of these
benchmark functions is provided in Table 2.

All simulation experiments are conducted in a
consistent experimental environment. The hardware spec-
ifications include an AMD 5600 H CPU with a main
frequency of 3.3 GHz, complemented by 16 GB of DDR4
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Algorithm 1
The Proposed Time-optimal Trajectory Planning Algorithm

Input: Cartesian space interpolation points, population size M , number of iterations Tmax

Output: Optimal fitness value and global optimal time parameter ti1, ti2, and ti3

Step1 Four interpolation points in Cartesian space are inversed into six groups of interpolation points in joint space
through the application of inverse kinematics.

Step2 According to the number of populations M and the number of iterations Tmax, the population position is
randomly initialised.

Step3 According to (9), the joint coefficient matrix b under the time parameters of group M is solved, the joint angle,
velocity, and acceleration of different interpolation stages are calculated according to the (1), (2), and (3).

Step4 The fitness value of the initial time parameter is calculated and the global optimal fitness value Xb is obtained.

Step5 When the dung beetle rolls the ball straight forward, the position is calculated according to (21). If an obstacle
is encountered, the position is calculated according to (14).

Step6 According to the fitness value after the ball rolling behaviour, the local optimal position X∗ is updated.

Step7 The positions of breeding, foraging, and stealing are calculated according to (17), (19), and (20).

Step8 The fitness values of all individuals are computed, from which the optimal fitness value and the local optimal
time parameter are derived. Subsequently, the global optimal time parameter is preserved in accordance with
the greedy rule.

Step9 According to the adaptive T -distribution perturbation strategy outlined in (24), the global optimal time
parameter is updated.

Step10 Repeat the aforementioned steps until the iteration is complete, and subsequently output both the optimal
fitness value and the globally optimal time parameter.

Table 2
Benchmark Functions

Function Function Expressions Value Ranges Theoretical Value

F1 f (x) =
∑n

i=1 x
2
i [-100,100] 0

F2 f (x) =
∑n

i=1 |xi|+
∏n

i=1 |xi| [-10,10] 0

F3 f (x) =
∑n

i=1

(∑i
j=1 xj

)2
[-100,100] 0

F4 f (x) =
∑n

i=1 −xi sin
(√

|xi|
)

[-500,500] -12569.5

F5 f (x) =
∑n

i=1

[
x2
i − 10cos (2πxi) + 10

]
[-5.12,5.12] 0

F6 −20exp
(
−0.2

√
1
n

∑n
i=1 x

2
i

)
− exp

(
1
n

∑n
i=1 cos (2πxi)

)
+ 20 + e [-32,32] 0

memory. The operating system utilised is Windows 11, and
the testing software employed is MATLAB R2019b. Each
simulation experiment is executed independently for a total
of 30 runs on each test function. For comparative analysis,
the WOA [23], Harris Hawks optimisation (HHO) [23],
SSA [24], and DBO algorithms have been selected. The
relevant parameters for these algorithms are detailed in
Table 3.

The simulation results are presented in Table 4. Three
indicators—optimal value (Best), mean value (Mean), and
standard deviation (Std)—are employed to comprehen-
sively assess the optimisation capability and stability of the
algorithm. The optimal value reflects the best performance
achieved by the algorithm during the optimisation process,
while the mean value indicates its overall performance
level. Additionally, the standard deviation provides further

insight into the stability of algorithmic optimisation.
As shown in Table 4, NMSDBO demonstrates superior
optimisation capabilities. For unimodal functions F1 and
F3, only NMSDBO successfully identifies the theoretical
optimal value; both its mean and standard deviation
align with this theoretical optimal value of 0, thereby
underscoring its exceptional accuracy and stability. In
contrast, for unimodal function F2, DBO exhibits a slight
advantage over WOA and HHO; however, the improved
NMSDBO shows a more pronounced effect with an
accuracy enhancement ranging from 100 to 120 orders of
magnitude. Regarding multimodal functions, NMSDBO
also displays robust stability. In multimodal function
F4, DBO’s performance is poor; nevertheless, following
enhancements made to it, NMSDBO’s optimisation ability
and stability have significantly improved. For multimodal
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Table 3
Parameter Configuration of Different Algorithms

Algorithm Parameter Configuration

WOA Population size M = 30, maximum number of iterations itermax = 500, hunting behaviour probability Ps = 0.6,
logarithmic spiral shape parameter b = 1.

HHO Population size M = 30, the maximum number of iterations itermax = 500.

SSA The population size M = 30, the maximum number of iterations itermax = 500, the number of discoverers
PD = 0.2 ∗ n, the number of alarms SD = 0.2 ∗ n, and the alarm threshold ST = 0.8.

DBO Population size M = 30, the maximum number of iterations itermax = 500.

NMSDBO Population size M = 30, the maximum number of iterations itermax = 500.

Table 4
Test Results of Different Algorithms

Function Parameter WOA HHO SSA DBO NMSDBO

F1 Best 8.99E-84 1.59E-112 8.81E-161 2.66E-162 0.00E+00

Mean 7.18E-73 2.04E-100 3.74E-50 5.90E-106 0.00E+00

Std 2.92E-72 1.03E-99 2.05E-49 3.23E-105 0.00E+00

F2 Best 1.99E-57 4.31E-60 3.54E-176 2.30E-87 3.76E-208

Mean 2.60E-52 5.03E-51 7.67E-31 3.28E-58 4.37E-156

Std 7.55E-52 2.59E-50 3.65E-30 1.77E-57 2.39E-155

F3 Best 3.20E-58 8.19E-97 3.70E-201 3.16E-140 0.00E+00

Mean 7.94E-51 1.42E-79 6.33E-23 3.04E-33 0.00E+00

Std 4.08E-50 5.30E-79 3.47E-22 1.66E-32 0.00E+00

F4 Best -1.26E+04 -1.26E+04 -9.98E+03 -1.23E+04 -1.26E+04

Mean -1.03E+04 -1.26E+04 -8.78E+03 -8.38E+03 -1.11E+04

Std 1.70E+03 4.88E-01 5.93E+02 1.54E+03 1.60E+03

F5 Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Mean 3.79E-15 0.00E+00 0.00E+00 5.51E+00 0.00E+00

Std 2.08E-14 0.00E+00 0.00E+00 3.02E+01 0.00E+00

F6 Best 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16

Mean 4.44E-15 8.88E-16 8.88E-16 8.88E-16 8.88E-16

Std 2.64E-15 0.00E+00 0.00E+00 0.00E+00 0.00E+00

functions F5 and F6, differences among HHO, SSA, and
NMSDBO are minimal; nonetheless, NMSDBO continues
to maintain a dominant position. Compared to DBO,
NMSDBO sustains a commendable degree of accuracy and
stability when dealing with multi-class functions.

The convergence curve serves as a crucial metric
for assessing the performance of optimisation algorithms.
By analysing the convergence curve, we can directly
observe the convergence speed, trend, and quality of
the final solution when addressing specific optimisation
problems. Figure 4 illustrates the convergence curves of five

algorithms applied to six benchmark functions. As shown in
Fig. 4(a), NMSDBO exhibits the fastest convergence speed,
consistently decreasing to achieve the lowest objective
function value throughout its iterations. The performance
of DBO follows closely behind NMSDBO, while WOA,
HHO, and SSA demonstrate similar performances with
comparatively larger fitness values on their curves. From
Fig. 4(b), it is evident that NMSDBO experiences rapid
decline during its initial phase before steadily dropping
to significantly lower fitness values than those achieved
by the other four algorithms. In Fig. 4(c), we observe
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Figure 4. The convergence curves of six benchmark functions tested by different algorithms: (a) F1 convergence curve; (b)
F2 convergence curve; (c) F3 convergence curve; (d) F4 convergence curve; (e) F5 convergence curve; and (f) F6 convergence
curve.

that NMSDBO not only performs well but also converges
quickly; its objective function value is substantially lower
than those produced by other algorithms. Although DBO
shows a rapid decrease at certain points during its mid-
iterations, both early and late stages exhibit slower rates
of decline. Figure 4(d) reveals the weak global search
ability of the DBO algorithm. Although the NMSDBO
encountered an iterative bottleneck period around the
30th generation, it soon resumed falling again and jumped
out of the local optimal solution, demonstrating a strong
global optimal solution search ability. As illustrated in

Fig. 4(e), NMSDBO successfully identifies global optimal
solutions; moreover, when compared with other algorithms
capable of achieving theoretical optimality as well, it does
so at an accelerated pace. Finally, Fig. 4(f) confirms that
NMSDBO not only has superior convergence speed but also
excels in rapidly locating final objective function values.
In summary, when compared to the other four algorithms,
the NMSDBO exhibits a superior convergence rate and
enhanced global search capability.
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Figure 5. The angular velocity curve of each joint before optimisation.

Figure 6. The angular acceleration curve of each joint before optimisation.

Table 5
Joint Space Position Points of Manipulator

Joint X0 X1 X2 X3

1 -2.7182 -2.8735 -1.7550 -2.2460

2 -0.9328 -1.1149 0.4071 1.2877

3 1.5064 2.2350 2.7263 2.2095

4 0.9971 0.4507 -1.5626 -1.9264

5 -1.5708 -1.5708 -1.5708 -1.5708

6 1.1474 1.3027 0.1842 0.6752

4.2 Performance Analysis of Time-optimal
Trajectory Planning Algorithm

We selected two target points of the end effector of the
manipulator in the Cartesian coordinate system, along
with two transitional points during the motion process.
Utilising inverse kinematics, the joint angles corresponding
to the four interpolation points listed in Table 5 within
joint space are obtained.

In order to verify the efficiency of the proposed
NMSDBO algorithm in reducing the running time of
the manipulator, a comparison is made with the DBO
algorithm. The relevant parameters for this algorithm
are set as follows: population size M = 30, the interval
between adjacent path points is 4 s, the maximum number
of iterations is 500, and the constraints of each joint
are presented in Table 6. Each method was executed ten
times, and the time parameters for the 3-5-3 polynomial
interpolation trajectory of each joint were recorded.

Under the constraint conditions of each joint, the
optimal interpolation time identified by the two algorithms
for each joint are presented in Table 7. When comparing
the optimal interpolation time provided by different
algorithms, it is essential to ensure that the motion of
each joint adheres to time synchronisation requirements.
This is necessary because the motors of all joints must
operate cohesively during actual movement. Consequently,
a comparison is made regarding the motion time of each
joint within the same trajectory planning segment as shown
in Table 7, and the longest motion time among all joints
in each trajectory is selected as the optimal interpolation
time.

Table 8 records the time parameters for the 3-5-
3 polynomial trajectory planning optimised by various
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Table 6
Constraint Conditions of Each Joint

Constraint Condition Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

|vmax| (rad/s) 3.05 3.05 3.05 6.28 6.28 8.73

|amax|
(
rad/s2

)
3.05 3.05 3.05 6.28 6.28 8.73

Table 7
The Interpolation Time of Each Joint after NMSDBO Optimisation

Joint Number DBO NMSDBO

t1 (s) t2 (s) t3 (s) t1 (s) t2 (s) t3 (s)

1 0.7855 2.9164 1.5995 0.7702 2.7831 1.5569

2 0.9420 1.7876 1.4113 0.9421 1.7886 1.4102

3 1.4985 1.7640 1.4488 1.2148 1.7493 1.4359

4 0.7225 0.6930 0.5906 0.7225 0.6930 0.5906

5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.4557 1.6702 0.9323 0.4578 1.6712 0.9291

Figure 7. The velocity curve of each joint after optimisation.

algorithms, along with the total duration of the trajectory
planning process. The experimental results indicate that
by introducing NMSDBO algorithm, the time parameters
of the 3-5-3 polynomial trajectory planning is successfully
optimised. Following optimisation, the time required for
each joint to complete its action has been reduced from an
initial preset of 12 sto 5.5548 s. This represents a reduction
of 7.64% compared to the DBO algorithm’s duration of
6.0144 s.

The trajectory curves utilising the preset 3-5-3 polyno-
mial trajectory planning are illustrated in Figs. 5 and 6, it
is evident that during the manipulator’s motion planning,
both the angular velocity and angular acceleration of
each joint exhibit continuity and smoothness. However,
it is noteworthy that their peak values fall significantly
below the preset velocity and acceleration constraints.

Table 8
The Interpolation Time Optimisation Results of Each

Joint of Different Algorithms

Algorithm t1 (s) t2 (s) t3 (s) Total Duration (s)

3-5-3 4 4 4 12

DBO 1.4985 2.9164 1.5995 6.0144

NMSDBO 1.2148 2.7831 1.5569 5.5548

This observation indicates considerable potential for
optimising the manipulator’s motion performance. By
adjusting the parameters of the planning algorithm,
enhancements can be made to both speed and acceleration,
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Figure 8. The acceleration curve of each joint after optimisation.

thereby reducing the time required to complete tasks
effectively.

Substituting the optimised interpolation time t1 =
1.2148s, t2 = 2.7831s, t3 = 1.5569s into the 3-5-3 polyno-
mial trajectory planning allows for the determination of
changes in angular velocity and angular acceleration for
each joint, as illustrated in Figs. 7 and 8. The diagrams
clearly demonstrate that the time-optimal trajectory
planning method based on the NMSDBO algorithm
proposed in this paper not only adheres to the predefined
speed and acceleration constraints but also significantly
enhances both speed and acceleration across all joints.
Furthermore, it is evident from the graphs that the
velocity and acceleration curves for each joint over time are
smooth and continuous. This characteristic ensures fluid
motion during operation, thereby mitigating mechanical
wear associated with abrupt changes in acceleration.
Additionally, a smooth motion trajectory contributes to
greater stability of the manipulator during its operations,
which is particularly crucial when executing precision
operations.

5. Conclusion

In this paper, we present a 3-5-3 piecewise polynomial
interpolation trajectory planning method specifically
designed for the IRB2600 manipulator. To reduce the
time parameters associated with the trajectory planning,
we propose a trajectory optimisation approach based on
NMSDBO algorithm. By incorporating penalty functions,
the constrained optimisation problem is transformed into
an unconstrained optimisation framework. The integration
of the golden sine strategy, along with the introduction
of adaptive T -distribution perturbations, enhances both
the rolling behaviour of DBO algorithm and the evolution
of its global optimal position. Through comparative
analysis of experimental performance against WOA,
HHO, SSA, and DBO algorithms, it is demonstrated
that the NMSDBO algorithm exhibits superior accuracy,
rapid convergence speed, and exceptional global search
capabilities. The simulation experiments focused on time-
optimal trajectory planning utilising NMSDBO indicate

that this method can significantly decrease the running
time of the manipulator while ensuring smoothness and
continuity in its movements. This aligns more closely with
modern large-scale industrial production requirements
for efficient, safe, and stable robotic operations. Future
research should concentrate on investigating methodologies
for the simultaneous optimisation of multiple indicators,
and complex environments with obstacles, thereby offering
more comprehensive and efficient solutions for the
trajectory optimisation of robotic arms.
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