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Abstract

In order to realise thrust prediction under quasi-cavitation when

the underwater thrusters working near water surface, a novel thrust

prediction approach based on Bayesian estimation and Gaussian

process is proposed. The Bayesian estimation based thrust model

(BETM) is established to obtain the relationship between thrust,

rotation speed and input current. Then, a quasi-cavitation prediction

model based on Gaussian process (QCTM-GP) is established which

considering thrust loss caused by quasi-cavitation, the BETM and

QCTMGP are used to realise quasi-cavitation thrust prediction. The

accuracy of BETM and the effectiveness of QCTM-GP is validated

via experiments.
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1. Introduction

Most of underwater vehicles (UVs) utilise propeller-type
underwater thrusters as their unique power source [1]–
[3] Hence, thrust prediction of underwater thrusters with
accuracy is an important factor to improve the performance
of UVs. However, quasi-cavitation will frequently occur
when the UV work near the water which greatly reducing
the efficiency of the thruster and causing thrust loss and
noise as shown in Fig. 1.
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Up to now, several approaches are proposed to predict
the thrust of underwater thrusters. The analysis of thrust
is divided into numerical simulation [4]–[6] and model
parameter identification [7], [8]. For numerical simulation,
finite element analysis is utilised to simulate the fluid
structure coupling of the propeller and some characteristics
related to thrust can be obtained. The model parameter
identification gets the data directly though tests to identify
the model parameters.

Wu et al. proposed a practical approach to simulate
hydrodynamic performance of ducted propeller attached
in an UV under the influence of flow field of the
vehicle. Computational fluid dynamics (CFD) technique
based on the finite volume method and multi-sliding
mesh technique are applied to solve the Navier–Stokes
equations when the vehicle in a yawing motion [9]. Wang
et al. [10] examined the characteristics of the relationship
between the evolution of propeller trailing vortex wake and
skew angle numerically based on four different five-blade
David Taylor model basin (DTMB) model propellers with
different skew angles, the simulated results shown that
the contraction of propeller trailing vortex wake can be
restrained by increasing skew angle and loading conditions.

In practice, the thrust model based on prediction
method of underwater thrusters is a complex nonlinear
function related to the rotation speed of propeller [11], [12].
For the convenience of calculation, the steady-state
thrust model based on prediction method is simplified to
the quadratic relationship between thrust and rotation
speed in most cases which uses thrust coefficients to fit
different types of propellers [13]–[15]. Tran et al. [16]
presented the open water propeller characteristics and four-
quadrant propeller models as applied to a torpedo-shaped
UV. A series of experiments with a Gavia autonomous
underwater vehicle propeller were conducted in the towing
tank using a rotor testing apparatus. Paolucci et al.
[17] proposed permanent magnet synchronous motors for
underwater propulsion and the design and implementation
of a complete solution for underwater propulsion were
presented as well as a novel rotor polarity identification
technique exploiting a high-frequency injection control.
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Figure 1. Schematic of quasi-cavitation.

Nevertheless, the quasi-cavitation is not considered in
current researches. when quasi-cavitation occurs, it will
cause thrust loss and noise. In this paper, a novel quasi-
cavitation prediction model based on Bayesian estimation
and Gaussian process is proposed to complete thrust
prediction under quasi-cavitation. First, the Bayesian
estimation based thrust model (BETM) is established to
accurately predict thrust without quasi-cavitation. Then,
the quasi-cavitation prediction model based on Gaussian
process (QCTM-GP) is represented which considering
thrust loss caused by quasi-cavitation. Finally, the accuracy
of BETM and the effectiveness of QCTM-GP is validated
via experiments. The proposed quasi-cavitation model
based on prediction method holds a great potential on the
accurate control of UVs.

2. Quasi-Cavitation Thrust Model-Based on
Prediction Method

In this section, a novel quasi-cavitation thrust model based
on prediction method is proposed to perform a prediction
under quasi-cavitation which utilises the information of
rotation speed, input current and the distance between
a propeller and the water surface. The proposed quasi-
cavitation thrust model based on prediction method is
composed of BETM and QCTM-GP as shown in (1)

f̃ = b(np, I)︸ ︷︷ ︸
BETM

+ g(np, I, h)︸ ︷︷ ︸
QCTM−GP

(1)

where f̃ is the output of model based on prediction method,
np is the rotation speed of propeller, I is the input current
of driver, and h is the distance between the propeller and
water surface.

BETM uses Bayesian estimation method to fuse the
rotation speed with an input current to obtain accurate
thrust prediction without quasi-cavitation. Furthermore,
QCTM-GP utilises Gaussian process to prediction thrust
loss of BETM under quasi-cavitation. The structure of
quasi-cavitation model based on prediction method is
shown in Fig. 2.

2.1 Modelling of Underwater Thrusters

The relationship between the thrust and the rotation speed
of a propeller is shown as (2) [13]

fp = ρD4Kf (J0) |np|np (2)

where fp is the thrust of underwater thruster, ρ is the
density of water, D is the diameter of propeller, J0 is the
advance number, and Kf is the thrust coefficient.

The relationship between torque and rotation speed of
propeller can be expressed as (3) [13]

Qp = ρD5KQ(J0) |np|np (3)

where Qp is the torque of underwater thruster and KQ is
the torque coefficient.

Kf and KQ are functions of J0. Typically, the
movement speed of the UV is slow, namely, J0 ≈ 0.
Moreover, due to the symmetrical design of the propeller,
Kf and KQ are approximately constant, as shown in (4)

Kf ≈ α (4a)

KQ ≈ β (4b)

where α and β are constants.
Hence, the relationship of fp and Qp can be expressed

as

fp =
α

Dβ
Qp (5)

The underwater thruster consists of propeller, gear
reducer and BLDC as shown in Fig. 3. The relationship
between the rotation speed and torque of the BLDC can
be expressed as (6)

ne = λnp (6a)

Qp = ηgλQe (6b)

where λ is reduction ratio of the gear reducer (here is 5:1),
neis the rotation speed of the BLDC, Qeis the torque of the
BLDC, and ηgis the efficiency of the gear reducer, usually
0.85.

The voltage balance equation of BLDC can be
expressed as
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where u∗ is the phase voltage, i∗ is the phase current, e∗
is the back electromotive force (BEMF), r is the armature
resistance, L is the armature inductance, M is the mutual
inductance and p is differential operator, p = d/dt.
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Figure 2. The structure of quasi-cavitation thrust model based on prediction method.

Figure 3. The underwater thruster and driver: (a) The structure of thruster and (b) The micro servo driver.

The electromagnetic torque of the BLDC satisfies the
relationship shown as (8)

e∗ = 2πKene (8a)

Te = Kei∗ (8b)

where Teis the electromagnetic torque of the BLDC and
Keis the torque constant.

Consequently, the dynamic model of the BLDC under
speed control can be expressed as (9)

L
di∗
dt

= −ri∗ − 2πKene + u∗ (9a)

2πJe
dne

dt
= Kei∗ −QL −Bne ≈ Kei∗ −Qe (9b)

where Jeis the inertia of the BLDC, B is the damping
coefficient, and QLis the loading moment, QL= Qe.

The electromagnetic power of the BLDC Peis shown
as (10)

Pe ≈
√
3e∗i∗ = Tene (10)

Furthermore, the relationship between input power
and electromagnetic power of the BLDC can be expressed
as (11)

Pe = P cosφ = UI cosφ (11)

where P is the input power of BLDC, cosφ is the power
factor (usually 0.85 ∼ 0.95), U is the input voltage of
driver, and I is the input current of driver.

At the steady state, Qe= Te= Kei∗. Hence,

I =
Tene

U cosφ
=

ρD5KQ |np|3

ηgU cosφ
= Cn |np|3 (12)

where Cn= ρD5KQ/ (ηgU cosφ) is constant at the
steady state which indicates that the input current is
proportional to the cube of the rotation speed. Therefore,
the relationship between an input current, the rotation
speed, and the thrust are shown in (13)

I =
DKQ

KT ηgU cosφ
fpnp = CT fpnp (13)

where CT= DKQ/ (KfηgU cosφ) is constant at the steady
state.

Thus, the relationship between fpand I can be
expressed as

fp = CiI
2
3 (14)

where Ci is the current coefficient.
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2.2 Bayesian Estimation-Based Thrust Model

From (2) to (14), the thrust can be predicted by rotation
speed or input current individually. In order to perform
more accurate thrust prediction, BETM is proposed which
uses Bayesian estimation to fuse the rotation speed with the
input current to obtain more accurate thrust prediction.

Assume that the data set of a rotation speed FNand the
data set of an input current FIare Gaussian distribution,
where fnand firepresent the rotation speed and the input
current in a certain measurement, respectively.

To measure the deviation between fnand fi, Define
confidence measures dniand dinas

dni = 2

∫ i

n

pn( f | fn)dx (15a)

din = 2

∫ n

i

pi( f | fi)dx (15b)

where pn(f |fn) and pi(f |fi) are probability density function
of fnand fiwhich satisfy the following conditions

P∗( f | f∗) =
1√
2πσ∗

e−
1
2

(
f − f∗
σ∗

)2

(16)

where σ∗ is mean square error of measurement data, σ∗ =
E{[x - E (x )]2}.

dniand din represent the degree of fusion between the
two data sets. The smaller the value of d, the closer the
thrust obtained by either method. Thus, the confidence
matrix D can be expressed as

D =

dnn dni

din dii

 (17)

Thrust model can be obtained by rotation speed and
input current, respectively. To determine whether the
thrust prediction results obtained by the two methods are
compatible, the fusion coefficient γ is introduced to divided
the confidence measure d

δ =

1 (d ≤ γ)

0 (d > γ)
(18)

where γ is the fusion coefficient. When γ = 0, it means that
the two thrust prediction results are of poor compatibility
and one of themmust be eliminated. If γ = 1, the two thrust
prediction results are well compatible, and the two results
can be compatible. Therefore, the Bayesian estimation
value of the thrust f is:

d(fn, fi)= R( f | fn, fi) =
∫
fp( f | fn, fi)df (19)

where the conditional probability density function
p(f |fn, fi) is unknown, but it can be expressed by (20)

p( f | fn, fi) =
p(f, fn, fi)

p(fn, fi)
(20)

where f ∼ N (u0, σ
2
0), fn ∼ N (u, σ2

n), fi ∼ N (u, σ2
i ).

According to the Bayes Formula, let β = 1/p(fn, fi),

Figure 4. The prediction error of BETM: (a) The
performance of BETM under quasi-cavitation and (b) The
prediction error of BETM.

p(f |fn, fi) can be written as

p( f | fn, fi) = β
1√
2πσ0

e
− 1

2
(f−u0)

σ2
0

∏
k∈{fn,fi}

1√
2πσk

e
− 1

2

∑
k∈{fn,fi}

(xk−u)2

σ2
k (21)

By (21), p (f |fn, fi) is Gaussian distribution, i.e., f ∼
N (un, σn). Hence, BETM can be expressed as the following
form

f = b(np, I) =

∑
k∈{fn,fi}

xk

σ2
k
+ u0

σ2
0∑

k∈{fn,fi}
1
σ2
k
+ 1

σ2
0

(22)

2.3 Quasi-Cavitation Prediction Model-Based on
Gaussian Process

BETM can perform accurate thrust prediction without
quasi-cavitation. However, BETM can cause large pre-
diction error under quasi-cavitation effect. Therefore, a
QCTM-GP is presented to learn the prediction error of
BETM via Gaussian process and achieve accurate thrust
prediction under quasi-cavitation.

Let f̂ be the actual thrust of the underwater thruster
and f be the prediction thrust of BETM. Therefore, the
prediction error of BETM ferror can be written as

ferror = f̂ − f (23)

Thrust loss increases due to the decrease of the
efficiency of the propeller under quasi-cavitation, for
example, when the rotation speed np = 1500 r/min,
the distance between a propeller and the water surface
h = 50 cm, the prediction error of BETM increases
correspondingly as shown in Fig. 4.

In order to realise accurate thrust prediction under
quasi-cavitation, the prediction error of BETM ferror is
selected as the output of GP based model as (24)

g(x) = ferror ∼ GP(m,κ) (24)
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Figure 5. The impact analysis of the distance between propeller and surface.

where g(x ) is the function of the prediction error, m is the
mean function of GP, κ is the covariance function of GP.

In the feature selection of GP, the rotation speed of
the propeller npand the input current I are selected to be
the input feature, namely (np, I ) → ferror. Meanwhile,
the probability of quasi-cavitation is also related to the
distance between the propeller and water surface as shown
in Fig. 5.

As shown in Fig. 5, the underwater thruster remains
the rotation speed at about 1404 r/min and adjusts the
distance between the propeller and water surface h. When
h is 20 cm [Fig. 5(a)], quasi-cavitation appears at 6.2
s, the thrust decreases from 38 N to 9.8 N. When h
is 30 cm [Fig. 5(b)], quasi-cavitation appears at 10.5 s
and disappears at 16 s. When h is 45 cm [Fig. 5(c)],
quasi-cavitation appears at 13.3 s and disappears after 2.7
s. Finally, when h is 55 cm [Fig. 5(d)], quasi-cavitation
appears at 16.7 s and disappears soon.

Therefore, h is selected as the input feature of GP.
Let D = {(xi, yi)|i = 1,...,n} be the training set, where
xi=(npi, Ii, hi) and yi = ferror.

QCTM-GP can be expressed as (25)

∆f = GP (m,κ) = g(np, I, h) (25)

The training set can be expressed as

D = { (xi, yi)| i = 1, 2, ..., n} (26)

where xi ∈ Rd is a set of d dimension input vectors in the
d × n dimension input matrix x. And yirepresents a set
of observations in 1 × n dimension observation matrix of
thrust.

Consequently, the training set can be represented as D
= (x, y). Furthermore, each sample is weighted accordingly
with ωi. Let ω be the n-th diagonal matrix

ω =


ω1 0 · · · 0

0 ω2 · · · 0
...

...
. . .

...

0 0 · · · ωn

 (27)

Assume that the QCTM-GP has the following form

g(xi) = ϕ(xi)
Tαi (28)

where φ(·) is nonlinear mapping function, αiis parameter
vector which satisfies the Gaussian prior distribution with
mean 0 and covariance matrix Σp, namely

α ∼ N

(
0,
∑
p

)
(29)

Assume that ε is the noise between the observation
yiand the output of QCTM-GP g(xi). Then the weighted
estimation model can be expressed as

ωiyi = ωig(xi) + ε (30)

Assume that ε follows an independent Gaussian
distribution with mean 0 and variance σ2

n as (31)

ε ∼ N(0, σ2
n) (31)

Considering the weighted function and noise, the
Bayesian model is introduced to predict the output of GP
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Figure 6. The experimental facility for thrust experiments: (a) The structure of experimental facility and (b) The structure
of data acquisition system.

g∗ which can be given by

p( g∗|x∗, x, y) =

∫
p( g∗|x∗, ω)p( ω|x, y)

∼ N

(
1

σ2
n

ϕ(x∗)
TB−1ϕ(x)ω2y, ϕ(x∗)

TB−1ϕ(x∗)

)
(32)

where B = σ−2
n ϕ(x)ω2ϕ(x)T +Σ−1

p . Let k satisfy k(x, xT )

= φ(xT )Σpφ(x ). According to the characteristics of
covariance matrix, Σpis the positive definite matrix.

Then
(
Σ

1/2
p

)2
= Σp. Define φ(x) = Σ

1/2
p ϕ(x) and it

can be obtained that k(x, xT ) = φ(x )φ(xT ). The covariance
matrix can be defined as k = φ(x )Σpφ(x

T ). Then

1

σ2
n

ϕ(x)(ω2k + σ2
nIn) = B

∑
p

ϕ(x) (33)

Let (33) pre-multiplication by B−1 and post-
multiplication by (ω2k + σ2In)

-1

1

σ2
n

B−1ϕ(x) =
∑
p

ϕ(x)(ω2k + σ2
nIn )−1 (34)

Hence, The posterior distribution mean of g∗ can be
rewritten as:

1

σ2
n

ϕ(x∗)TB−1ϕ(x)ω2y = k(x∗, x)(ω2k + σ2
nIn)

−1ω2y (35)

According to Sherman – Morrison – Woodbury
theorem, the posterior distribution covariance of f* can be
rewritten as

ϕ(x∗)T
(

1

σ2
n

ϕ(x)ω2ϕT (x) + Σ−1
p

)−1

ϕ(x∗)

= k(x∗, x∗)− k(x∗, x)

∗
(
k(x, x) + ω−1σ2

nInω
−1
)−1

k(x, x∗) (36)

Therefore, QCTM-GP can be expressed as

g∗|x∗, x, y ∼ N(k(x∗, x)(ω2k + σ2
nIn)

−1ω2y, k(x∗, x∗)

−k(x∗, x) ∗ (k(x, x) + ω−1σ2
nInω

−1)−1k(x, x∗)) (37)

Figure 7. The experimental results of BETM: (a) The
curve of rotation speed np over time, (b) The curve of input
current I over time, (c) The curve of thrust f over time.
The blue dash line is the real thrust and the red solid line
is the thrust prediction of BETM and (d) The prediction
error of BETM.

3. Experimental Verifications

Experiments are set up to validate the accuracy of BETM
and the effectiveness of QCTM-GP as shown in Fig. 6.
High-speed data acquisition is achieved by ATI’s mini
45 F/T sensor and NI’s DAQ6210 data acquisition card.
BLDC is utilised for the underwater thruster with the
power of 350 W, and the maximum thrust of underwater
thruster is 55 N.

To validate the accuracy of BETM, several experiments
have done under different thrust commands as shown in
Fig. 7. The thrust predictions of 18%, 36%, 63% and
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Figure 8. The experimental results of QCTM-GP. The blue dash lines are the real thrust, the red solid lines are the thrust
prediction of QCTM-GP and the gray areas are the 95% confidence of QCTM-GP. The two subfigures in each row describe
the performance of QCTM-GP with the same thrust command and different h under quasi-cavitation. The two subfigures in
each column describe the performance of QCTM-GP with different thrust commands and the same h under quasi-cavitation.

91% thrust commands are verified in the experiments,
respectively. As shown in Fig. 7(a) and (b), the fluctuation
of current is greater than that of rotation speed. Therefore,
the thrust prediction obtained by rotation speed in BETM
has higher weight than that obtained by input current.

For example, at 18% thrust command in 0 s∼10 s,
thrust is at about 10 N as shown in Fig. 7(c). But there
is fluctuation of thrust at 7 s. Due to the integration of
input current information, BETM accurately predicts the
change of thrust within the error of 1 N. Hence, BETM
can perform thrust prediction with accuracy via fusing the
two predictions based on Bayesian estimation.

To further verify the accuracy of BETM, the error of
BETM is analysed as shown in Fig. 7(d). The lighter the
point’s color, the larger the point’s error. From the error
distribution of BETM, the maximum error is less than 2
N. Moreover, 75% of the errors are within 1 N. Therefore,
BETM can perform accurate thrust prediction without
quasi-cavitation.

To demonstrate the effectiveness of QCTM-GP, quasi-
cavitation thrust predictions via QCTM-GP are presented
at different thrust commands and different h as presented
in Fig. 8.

It can be seen from the subfigures of each row that
the occurrence probability and duration of quasi-cavitation
significantly decrease with the increasement of the distance
between propeller and water surface. When the thrust
command is 40% and h is 20 cm, quasi-cavitation appears
at 11.2 s and disappears after 3.6 s. When h increase to 40
cm, quasi-cavitation appears at 15.2 s and disappears after

1.3 s. From the subfigures of each column, the occurrence
probability and duration of quasi-cavitation significantly
increase with the increase of rotation speed.

When h is 20 cm and thrust command is 40%,
quasi-cavitation appears at 11.2 s, while under 91%
thrust command, quasi-cavitation appears at 2.7 s. The
experimental results demonstrate the correctness of feature
selection in GP.

As shown in Fig. 8, thanks to the accurate prediction
of BETM, thrust model based on prediction method can
accurately predict the thrust without quasi-cavitation. The
confidence of GP remains ±1 N and the errors are less
than 2 N. When quasi-cavitation occurs, although BETM
cannot perform the thrust prediction with accuracy, the
thrust loss can be compensated by QCTM-GP with the
95% confidence of ±1.7 N and error less than 3.5 N which
satisfy the accuracy requirement of UVs’ control system
for underwater thrusts.

4. Conclusions

In this paper, a novel thrust prediction approach is
proposed to accurately obtain the thrust loss with
quasi-cavitation effect. First, the underwater thruster is
modelled, which can establish the relationship between the
thrust and the rotation speed, an input current. Second,
the BETM is applied without quasi-cavitation. Then, a
QCTM-GP is established, which can consider thrust loss
due to quasi-cavitation, and the thrust prediction model
is obtained based on BETM and QCTM-GP. Finally, the
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accuracy of BETM and the effectiveness of QCTM-GP
is validated by experiments, the results show that quasi-
cavitation model based on prediction method can perform
a precise thrust prediction, and the error is within 3.5
N, which can satisfy the accuracy requirements of UVs’
control system.
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