Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
A Neural-Net based PID Controllers for Nonlinear Multivariable Systems
M. Tokuda, T. Yamamoto, and Y. Monden
References
[1] K.J. Åström & T. Hägglund, Automatic tuning of PID controllers (Pittsburgh: Instrument Society of America, 1988).
[2] K.L. Chien, J.A. Hrones, & J.B. Reswick, On the automaticcontrol of generalized passive systems, ASME Trans., 74, 1972,175–185.
[3] P.T. Nims, Some design criteria for automatic controls, AIEETrans., 70, 1950, 606–611.
[4] J.G. Ziegler & N.B. Nichols, Optimum settings for automaticcontrollers, ASME Trans., 64(8), 1942, 759–768.
[5] S. Haykin, Neural networks (New York: Macmillan CollegePublishing, 1994).
[6] A.U. Levin & K.S. Narendra, Control of nonlinear dynamicalsystems using neural networks, Part II: Observability, identification and control, IEEE Trans. Neural Networks, 7(1), 1996, 30–42.
doi:10.1109/72.478390
[7] S. Omatsu, K. Marzuki, & Y. Rubiyah, Neuro-control and itsapplications (Berlin: Springer-Verlag, 1995).
[8] K.S. Narendra & K. Parthasarathy, Identification and controlof dynamical systems using neural networks, IEEE Trans.Neural Networks, 1(1), 1990, 4–27.
doi:10.1109/72.80202
[9] H. Shu, X. Guo, & H. Shu, PID neural networks in multivariable systems, Proc. IEEE Int. Symp. on Intelligent Control, Vancouver, 2002, 440–444.
doi:10.1109/ISIC.2002.1157803
[10] M. Tokuda & T. Yamamoto, A neural-net based controllersupplementing a multiloop PID control system, IEICE Trans.Fundamentals, E85-A(1), 2002, 256–261.
[11] T. Matsukura, A. Fujiwara, M. Namba, & Y. Ishida, NonlinearPID controller using neural networks, Proc. Int. Conf. onNeural Networks, Houston, 1997, 811–814.
doi:10.1109/ICNN.1997.616127
[12] T.H. Lee, P.K. Yue, & K.K. Tan, A neural-network-based modelreference PID-like controller for process control, EngineeringApplications of Artificial Intelligence, 7(6), 1994, 677–684.
doi:10.1016/0952-1976(94)90070-1
[13] H.H. Rosenbrock, State-space and multivariable theory (NewYork: Wiley-Interscience, 1970).
[14] T. Yamamoto & S.L. Shah, Design and experimental evaluationof a multivariable self-tuning controller, Proc. IEEE Conf.Control Application, Trieste, Italy, 1998, 1230–1234.
[15] D.W. Clarke, C. Mohtadi, & P.S. Tuffs, Generalized predictivecontrol, Automatica, 23(2), 1987, 137–160.
doi:10.1016/0005-1098(87)90087-2
[16] M. Katayama, T. Yamamoto, & Y. Mada, A design of multilooppredictive self-tuning PID controllers, Trans. AJC, 4(4), 2002,472–481.
[17] R. Isermann, Digital control systems (Berlin: Springer-Verlag,1981).
[18] K.K. Tan, T.H. Lee, S.N. Huang, & F.M. Leu, PID controldesign based on a GPC approach, Industrial and EngineeringChemistry Research, 41(8), 2002, 2013–2022.
doi:10.1021/ie010480i
[19] R.M. Miller, S.L. Shah, R.K. Wood, & E.K. Kwok, PredictivePID, ISA Trans., 38, 1999, 11–23.
doi:10.1016/S0019-0578(98)90041-6
[20] R. Namba, T. Yamamoto, & M. Kaneda, Robust PID controllerand its application, Proc. IEEE Conf. on Systems, Man andCybernetics, Orlando, FL, 1997, 3636–3641.
doi:10.1109/ICSMC.1997.633233
[21] M.J. Chen & C.A. Desoer, Necessary and sufficient conditionfor robust stability of linear distributed feedback systems,International Journal of Control, 35(2), 1982, 255–267.
doi:10.1080/00207178208922617
[22] A. Trabelsi, F. Lafont, M. Kamoun, & G. Enea, Identification of nonlinear multivariable systems by adaptive fuzzy takagi-sugeno model, International Journal of Computational Cognition, 2(3), 2003, 137-153
Important Links:
Abstract
DOI:
10.2316/Journal.201.2005.1.201-1542
From Journal
(201) Mechatronic Systems and Control (formerly Control and Intelligent Systems) - 2005
Go Back