K. Kuhnen
[1] A. Visintin, Differential models of hysteresis (Berlin-Heidelberg: Springer, 1994). [2] E. Madelung, Über Magnetisierung durch schnellverlaufendeStröme und die Wirkungsweise des Rutherford-MarconischenMagnetdetektors, Ann. der Physik, 17 1905, 861-890. doi:10.1002/andp.19053221003 [3] I.D. Mayergoyz, Mathematical models of hysteresis (Berlin:Springer, 1991). [4] M. Brokate & J. Sprekels, Hysteresis and phase transitions(New York: Springer, 1996). [5] M.A. Krasnosel’skii & A.V. Pokrovskii, Systems with hysteresis(Berlin: Springer, 1989). [6] G.V. Webb, D.C. Lagoudas, & A.J. Kurdila, Hysteresis modeling of SMA actuators for control applications, Journal of Intelligent Material Systems and Structures, 9, 1998, 432-448. [7] K. Kuhnen & H. Janocha, Inverse feedforward controller forcomplex hysteretic nonlinearities in smart material systems,Control and Intelligent Systems, 29(3), 2001, 74-83. [8] H.T. Banks & R.C. Smith, Hysteresis modeling in smart material systems, Journal of Applied Mechanics and Engineering, 5(1), 2000, 31-45. [9] O.M. El Rifai & K. Youcef-Toumi, Creep in piezoelectricscanners of atomic force microscopes, Proc. American ControlConf., Anchorage, USA, 2002, 3777-3782. [10] P. Ge & M. Jouaneh, Generalized Preisach model for hysteresisnonlinearity of piezoceramic actuators, Journal of PrecisionEngineering, 20, 1997, 99-111. doi:10.1016/S0141-6359(97)00014-7 [11] J. Schäfer & H. Janocha, Compensation of hysteresis in solid-state actuators, Sensors and Actuators, Physical A, 49, 1995,97-102. [12] M. Dimmler, U. Holmberg, & R. Longchamp, Hysteresiscompensation of piezo actuators, Proc. European Control Conf.,Karlsruhe, 1999, Rubicom GmbH (CD-ROM). [13] M. Goldfarb & N. Celanovic, Modeling piezoelectric stackactuators for control of micromanipulation, IEEE ControlSystems, 17(3), 1997, 69-79. doi:10.1109/37.588158 [14] K. Kuhnen & H. Janocha, Adaptive inverse control of piezo-electric actuators with hysteresis operators, Proc. EuropeanControl Conf., Karlsruhe, 1999, Rubicom GmbH (CD-ROM). [15] K. Kuhnen, Modeling, identification and compensation of complex hysteretic nonlinearities: A modified Prandtl-Ishlinskii approach, European Journal of Control, 9(4), 2003, 407-418. doi:10.3166/ejc.9.407-418 [16] G. Tao & P.V. Kokotovic, Adaptive control of plants withunknown hysteresis, IEEE Trans. on Automatic Control, 40(2),1995, 200-212. doi:10.1109/9.341778 [17] C.S. Su, Y. Stepanenko, J. Svoboda, & T.P. Leung, Robustadaptive control of a class of nonlinear systems with unknownbacklash-like hysteresis, IEEE Trans. on Automatic Control,45(12), 2000, 2427-2432. doi:10.1109/9.895588 [18] J. Lemaitre & J.L. Chaboche, Mechanics of solid materials(New York: Cambridge University Press, 1990). [19] H. Kortendieck, Entwicklung und Erprobung von Modellen zurKriech- und Hysteresiskorrektur (D¨usseldorf: VDI, 1993). [20] K. Kuhnen & H. Janocha, Compensation of creep and hysteresiseffects of piezoelectric actuators with inverse systems, Proc.6th Int. Conf. on New Actuators, Bremen, 1998, 309-312. [21] P. Krejcí & K. Kuhnen, Inverse control of systems with hysteresis and creep, IEE Proc.-Control Theory and Applications,148(3), 2001, 185-192. doi:10.1049/ip-cta:20010375 [22] H. Janocha & K. Kuhnen, Real-time compensation of hysteresisand creep in piezoelectric actuators, Sensors & ActuatorsPhysical A, 79, 2000, 83-89. doi:10.1016/S0924-4247(99)00215-0 [23] P. Haupt, Continuum mechanics and theory of materials(Berlin: Springer, 2002). [24] P. Krejcí, Hysteresis, convexity and dissipation in hyperbolicequations, Gakuto International Series on Mathematical Science & Applications, Vol. 8 (Tokyo: Gakotosho, 1996). [25] K. Kuhnen, Inverse Steuerung piezoelektrischer Aktoren mitHysterese-, Kriech- und Superpositionsoperatoren (Aachen:Shaker, 2001). [26] M. Papageorgiou, Optimierung (M¨unchen: Oldenbourg, 1991). [27] G. Tao & F. Lewis (Ed), Adaptive control of nonsmooth dynamic systems (London: Springer, 2001).
Important Links:
Go Back