OVERVIEW OF POWER SYSTEM OPERATIONAL AND CONTROL PHILOSOPHIES

Ibraheem, P. Kumar, and S. Khatoon

References

  1. [1] P. Kundur, Power system stability and control (New York:McGraw Hill, 1994).
  2. [2] A.K. Mahalanabis, D.P. Kothari, & S.I. Ahson, Computeraided power system analysis and control (New Delhi: TataMcGraw Hill, 1988).
  3. [3] IEEE Committee Report, Computer representation of excita-tion systems, IEEE Trans., PAS(87), 1968, 1460–1464.
  4. [4] IEEE Recommendations, Practice for excitation system modelsfor power system stability studies, IEEE Standards 421.5,1992.
  5. [5] E.W. Kimbark, Power system stability, Vol. 3: Synchronousmachines (New York: John Wiley & Sons, 1956).
  6. [6] T.L. Dillman, J.W. Skooglund, F.W. Keay, W.H. South, &C. Raczkowski, A high initial response brush less excitationsystem, IEEE Trans., PAS(90), 1971, 2089–2094. doi:10.1109/TPAS.1971.293025
  7. [7] P. Kundur, M. Klein, G.J. Rogers, & M.S. Zywno, Applicationof power system stabilizers for overall system stability, IEEETrans., PWRS-4(2), 1989, 614–626. doi:10.1109/59.193836
  8. [8] E.J. Davison & N.S. Rau, The optimal output feedback controlof a synchronous machine, IEEE Winter Power Meeting, TP-102-PWR, January 1971, Paper No. 71.
  9. [9] W.C. Chan & Y.Y. Hsu, An optimal variable structure stabilizerfor power system stabilization, IEEE Trans., PAS-102(6),1983, 1738–1746. doi:10.1109/TPAS.1983.317916
  10. [10] R.G. Harley, T.A. deMellion, & W. Janischewsky, The tran-sient stabilization of synchronous machine by discontinuoussupplementary excitation control, IEEE Trans., PAS-104(6),1985, 1394–1399. doi:10.1109/TPAS.1985.319233
  11. [11] C.M. Lim & S. Elangovan, Design of stabilizers in multimachinepower systems, Proc., IEE 132-C (3), 1985, 146–153.
  12. [12] J.W. Chapman, M.D. Ilic, C.A. King, L. Eng, & H. Kaufman,Stabilizing a multimachine power system via decentralizedfeedback linearizing excitation control, IEEE Trans. on PowerSystems, 8, 1993, 830–839. doi:10.1109/59.260921
  13. [13] Y.J. Cao, L. Jiang, S.J. Cheng, D.D. Chen, O.P. Malik, &G.S. Hope, A nonlinear variable structure stabilizer for powersystem stability, IEEE Trans. on Energy Conversion, 9, 1994,489–495. doi:10.1109/60.326467
  14. [14] V.R. Moorthi & R.P. Aggarwal, Damping effects of excitationcontrol in load frequency control system, Proc. IEE, 121 (11),1974, 1409–1416.
  15. [15] E.J. Davison & N.K. Tripathi, The optimal decentralizedcontrol of large power system: Load and frequency control,IEEE Trans., AC-23(2), 1978, 312–325. doi:10.1109/TAC.1978.1101708
  16. [16] S.C. Tripathy & N. Saha, Interacting optimal voltage regulatorand load frequency controller in power systems, JIE (India),59(EL-6), 1979, 327–332.
  17. [17] P. Kumar, Design of sub-optimal AGC regulators with perfor-mance index sensitivity minimization, doctoral diss., IndianInstitute of Technology, Kanpur, 1980.
  18. [18] G. Fujita, R. Yokoyama, T. Niimura, D. Makita, S. Takeuchi,& G. Shirai, Power system stabilizing control using variableseries capacitor based on H∝ control theory considering AVRand governor, Proc. IEEE Canadian Conf. on Electrical &Computer Engineering, 1, Canada, Toronto, May 25–28, 1997,43–46.
  19. [19] A.M. Sharaf & T.T. Lie, An artificial neural network coordi-nated excitation/governor controller for synchronous genera-tors, Electric Machines and Power Systems, 25, 1997, 1–14. doi:10.1080/07313569708955720
  20. [20] E. Hanschin, W. Hoffman, F. Reyer, & T. Stephanblome, Anew method of excitation control based on fuzzy set theory,Proc. 1993 IEEE PICA, Scottsdale, AZ, May 4–7, 1993, 34–40.
  21. [21] E. Hanschin, W. Hoffmann, F. Reyer, T. Stephanblome, U.Schlucking, D. Westermann, & S.S. Ahmed, A new method ofexcitation control based on fuzzy set theory, IEEE Trans. onPower Systems, 9, February 1994, 533–539. doi:10.1109/59.317569
  22. [22] J.A. Momoh, X.W. Ma, & K. Tomsovic, Overview and literaturesurvey of fuzzy set theory in power systems, IEEE Trans. onPower Systems, 10(3), 1995, 1676–1690. doi:10.1109/59.466473
  23. [23] Y.L. Abdel-Majid, M.A. Abido, S. Al-Baiyat, & A.H. Mantawy,Simultaneous stabilization of multimachine power systems viagenetic algorithms, IEEE Trans. on Power Systems, 14 (4),1999, 1428–1439. doi:10.1109/59.801907
  24. [24] A. Afzalian & D.A. Linkens, Training of neurofuzzy powersystem stabilizers using genetic algorithms, Electrical Powerand Energy Systems, 22, 2000, 935–102. doi:10.1016/S0142-0615(99)00042-3
  25. [25] R.P. Schultz & W.W. Price, Classification and identification ofpower system emergencies, IEEE Trans., PAS-103(12), 1984,3471–3479. doi:10.1109/TPAS.1984.318572
  26. [26] N. Kakimoto, B. Lin, & X. Hayashi, Expert system for initialstate restoration from system blackout of EHV power system,Electrical Engineering in Japan, 111 (1), 1991. doi:10.1002/eej.4391110109
  27. [27] C.W. Liu & J.S. Thorp, Application of synchronized phasormeasurements to real time transient stability prediction, IEEProc., 142 (4), 1995, 355–360. doi:10.1049/ip-gtd:19951975
  28. [28] J. Wang, Power system emergency control and restoration:A vertical integrated solution, Proc. IASTED Int. Conf. onHigh Technology in the Power Industry, Orlando, FL, October27–30, 1997, 9–13.
  29. [29] J.O. Thomas & P.K. Raymond, Determination of emergencypower system voltage control actions, IEEE Trans. on PowerSystems, 13 (1), 1998, 205–210. doi:10.1109/59.651637
  30. [30] K. Yamaji, M. Sato, K. Kato, M. Goto, & T. Kawai, Cooperatecontrol between large capacity HVDC system and thermalpower plants, IEEE Trans. on Power Systems, 14 (2), 1999,629–634. doi:10.1109/59.761890
  31. [31] R.J. Kafka, D.R. Penders, S.H. Bouchey, & M.M. Abidi, Systemrestoration plan development for a metropolitan electric system,IEEE Trans. on Power Apparatus & Systems, PAS-100, 1981,3703–3711. doi:10.1109/TPAS.1981.317013
  32. [32] R.J. Kafka, D.R. Penders, S.H. Bouchey, & M.M. Adibi, Roleof interactive and control computers in the development of asystem restoration plan, IEEE Trans. on Power App. Syst.,PAS-101, 1982, 17–25.
  33. [33] M.M. Adibi & R.J. Kafka, Power system restoration issues,IEEE Computer Applications in Power, 4 (2), 1991, 19–24. doi:10.1109/67.75871
  34. [34] S. Wunderlich, M.M. Adibi, R. Fischl, & C.O.D. Nwankpa, Anapproach to standing phase angle reduction, IEEE PAS-9 (1),1994, 470–476. doi:10.1109/59.317576
  35. [35] D. Hazarika & A.K. Sinha, Standing phase angle reduction forpower system restoration, Proc. IEE Generation, Transmission& Distribution, 145 (1), 1998, 82–88. doi:10.1049/ip-gtd:19981657
  36. [36] J.A. Huang, L. Audette, & S. Harrison, A systematic methodfor power system restoration planning, IEEE Trans., 10 (2),1995, 869–875. doi:10.1109/59.387928
  37. [37] R.P. Schulte, Artificial intelligence solutions to power systemoperating problems, IEEE Trans. on Power App. Systems,PWRS-2, November 1987, 920–926.
  38. [38] K. Komai, K. Matsumoto, & T. Sakaguchi, Analysis andevaluation of expert’s knowledge for power system restorationby mathematical programming method, Proc. IEEE Int. Symp.on Circuits and Systems, Finland, Espoo, June 1988, 1895–1898. doi:10.1109/ISCAS.1988.15307
  39. [39] C.C. Liu & T.S. Dillon (Eds.), State of the art in expert systemapplications in power systems (Hertfordshire, UK: PrenticeHall, 1990), 383–408.
  40. [40] K. Matsumoto, T. Sakaguchi, R.J. Kafka, & M.M. Adibi,Knowledge-based systems as operational aids in power systemrestoration, Proc. IEEE, 80 (5), 1992, 689–697. doi:10.1109/5.137224
  41. [41] B. Stott, O. Alsac, & A.J. Monticeilli, Security analysis andoptimization, Proc. IEEE, 75 (12), 1987, 1623–1644.
  42. [42] M. Suzuki, S. Wada, M. Sato, T. Asano, & Y. Kudo, Newlydeveloped voltage security monitoring system, IEEE Trans.on Power Systems, 7 (3), 1992, 965–971.8 doi:10.1109/59.207309
  43. [43] P.R. Bijwe, D.P. Kothari, & S.M. Kelapure, An efficient ap-proach for voltage security analysis and enhancement, Electri-cal Power and Energy Systems, 22, 2000, 483–486. doi:10.1016/S0142-0615(00)00020-X
  44. [44] M.P. Dave & S. Chauhan, A robust artificial neural networktechnique for dynamic security assessment, Electric Machinesand Power Systems, 24 (7), 1996, 733–744. doi:10.1080/07313569608955706
  45. [45] J.N. Fidalgo, J.A. Pecas Lopes, & V. Miranda, Neural networksapplied to preventive control measures for the dynamic securityof isolated power systems with renewables, IEEE Trans., PAS-11 (4), 1996, 1811–1816.
  46. [46] M.B. Djukanovic, D.P. Popovic, D.J. Sobajic, & Y.H. Pao,Prediction of power system frequency response after generatoroutage using neural nets, IEE Proc., C-140 (5), 1993, 389–398.
  47. [47] M.R. Aghamohammadi, H. Saitoh, & J. Toyoda, Securityconstrained generation scheduling using neural network and itssensitivity, Proc. IASTED Int. Conf. on High Technology inthe Power Industry, Orlando, FL, October 27–30, 1997, 3–8.
  48. [48] J.W.C. Cheng, F.D. Galiana, & D.T. McGillis, Studies ofbilateral contracts with respect to steady-state security in aderegulated environment, IEEE Trans. on Power Systems,13 (3), 1998, 1020–1025. doi:10.1109/59.709092
  49. [49] Z.B. Kremens, R. Lis, & M. Sobierajski, On-line securityassessment method using ANN for a utility in the de-regulatedsector, Proc. IASTED Int. Conf. on High Technology in thePower Industry, Orlando, FL, October 27–30, 1997, 337–342.
  50. [50] A.K. David & R.S. Fang, Security-based rescheduling of trans-actions in a deregulated power system, Proc. IEE Generation,Transmission & Distribution, 146 (1), 1999, 13–18. doi:10.1049/ip-gtd:19990073
  51. [51] J.W.M. Cheng, D.T. McGillis, & F.D. Galiana, Probabilisticsecurity analysis of bilateral transactions in a deregulatedenvironment, IEEE Trans. on Power Systems, 14 (3), 1999,1153–1159. doi:10.1109/59.780948
  52. [52] Y.Y. Hong & M.T. Weng, Optimal short-term real powerscheduling in a deregulated competitive market, Electric PowerSystems Research, 54, 2000, 181–188. doi:10.1016/S0378-7796(99)00083-8
  53. [53] Y. Chen & A. Bose, Direct ranking for contingency selection,IEEE Trans. on Power Systems, 4 (4), 1989, 1335–1344. doi:10.1109/59.41683
  54. [54] C.A. Castro & A. Bose, Correctability in on-line contingencyanalysis, IEEE Trans., PS-8 (3), 1993, 807–814.
  55. [55] P.R. Bijwe, D.P. Kothari, & L.D. Arya, Overload ranking of lineoutages with post-outage corrective rescheduling, InternationalJournal of EMPS, 22 (5), 1994, 557–568.
  56. [56] S. Ghosh & B.H. Chawdhury, Design of an artificial neuralnetwork for fast line flow contingency ranking, InternationalJournal of Power and Energy Systems, 18 (5), 1996, 271–277. doi:10.1016/0142-0615(94)00021-2
  57. [57] L. Srivastava, S.N. Singh, & J. Sharma, A hybrid neuralnetwork model for fast voltage contingency screening andranking, Electrical Power and Energy Systems, 22, 2000, 35–42. doi:10.1016/S0142-0615(99)00024-1
  58. [58] J. Carpentier, To be or not to be modern: That is the questionfor automatic generation control (Point of view of a utilityengineer), International Journal of Power and Energy Systems,7 (2), 1995, 81–91.
  59. [59] G.C. Chidolue, A computer scheme for economic generationand load frequency control in an interconnected power system,IEE Conf. Computer Systems, Operation & Control, May 1972,226–260.
  60. [60] J. Carpentier, Principle of a secure and economic automaticgeneration control, Proc. IFAC Symp. on Automatic Controlin Power Generation, Distribution and Protection, Pretoria,South Africa, 1980, 463–471.
  61. [61] H. Mukai, J. Singh, J.H. Spare, & J.A. Zaborsky, A reevaluationof the normal state control of the power system using computercontrol and system theory, Part 3: Tracking the dispatch targetswith unit control, IEEE Trans., PAS (100), 1981, 309–317.
  62. [62] P. Kambale, H. Mukai, J. Spare, & J. Zaborszky, A reevaluationof the nominal operating state control (AGC) of the powersystem using computer control and system theory, Part 3:Tracking the dispatch targets with unit control, IEEE Trans.,PAS102 (6), 1983, 1903–1912.
  63. [63] T.M. Abdel-Rahman & M.A.H. El-Sayed, Economic dispatchcontrol for large scale thermal power systems, InternationalJournal of Power and Energy Systems, 6 (1), 1986, 26–30.
  64. [64] F.N. Lee, J. Liao, & A.M. Breipohl, Coordination of SO2emission allowance trading, energy and spinning reserve trans-actions, and consumption of take-or-pay fuels, IEEE Trans.on Power Systems, 9 (3), 1994, 1243–1252. doi:10.1109/59.336074
  65. [65] M.R. Gent & J.W. Lamont, Minimum-emission dispatch, IEEETrans., PAS (90), 1971, 2650–2660.
  66. [66] A. Tsuji, Optimal fuel mix and load dispatching under environ-mental constraints, IEEE Trans., PAS (100), 1981, 2357–2364.
  67. [67] M.F. Ruane, J. Gruhl, F.C. Schweppe, B.A. Egan, D.H.Fyock, & A.A. Slowik, Supplementary control systems: Ademonstration, IEEE Trans., PAS-95 (1), 1976, 309–317. doi:10.1109/T-PAS.1976.32107
  68. [68] J.W. Lamont & M.R. Gent, Environmentally-oriented dis-patching techniques, Proc. 8th PICA, Minneapolis, 1973, 421–427.
  69. [69] J. Nanda, D.P. Kothari, & K.S. Lingamurthy, Economic-emission load dispatch through goal programming techniques,IEEE Trans. on Energy Conversion, 3 (1), 1988, 26–32. doi:10.1109/60.4195
  70. [70] T. Gjengedal, S. Johansen, & O. Hansen, A qualitative ap-proach to economic-environmental dispatch: Treatment of mul-tiple pollutants, IEEE Trans. on Energy Conversion, 7 (3),1992, 367–373. doi:10.1109/60.148554
  71. [71] R.D. Tabors, Coal to natural gas seasoned fuel switching: Anoption for acid rain control, IEEE Trans. on Power Systems,4 (2), 1989, 457–462. doi:10.1109/59.193816
  72. [72] J.H. Talaq, F. Al-Basri, & M.E. El-Hawary, A sensitivityanalysis approach to minimum emissions power flow, IEEETrans. on Power Systems, 9 (1), 1994, 436–442. doi:10.1109/59.317580
  73. [73] S. Ray, Cost-effectiveness of emission control at fossil-fuel unitsfor different cumulative load patterns, IEEE Trans. on PowerSystems, 12 (1), 1997, 321–328. doi:10.1109/59.574954
  74. [74] L.K. Kirchmayer, Economic control of interconnected systems(New York: Wiley, 1959).
  75. [75] C. Concordia & L.K. Kirchmayer, Tie line power and frequencycontrol of electric power systems, AIEE Trans., 72 (2), 1953,562–572.
  76. [76] C. Concordia & L.K. Kirchmayer, Tie line power and frequencycontrol of electric power systems: Part 2, AIEE Trans., 73 (3),1954, 133–141.
  77. [77] N. Cohn, Control of generation and power flow on intercon-nected systems (New York: Wiley, 1966).
  78. [78] P. Kumar & Ibraheem, AGC strategies: A comprehensivereview, International Journal of Power and Energy Systems,16 (2), 1996, 107–112.
  79. [79] P. Subramanium & C.J. Berg, Effect of load characteristics onfrequency control of power systems, Electrical Power SystemsResearch, 2, 1979, 77–84. doi:10.1016/0378-7796(79)90013-0
  80. [80] S.C. Tripathy, N.D. Rao, & L. Roy, Optimization of exciterand speed governor control parameters in stabilizing intersys-tem oscillations with voltage dependent load characteristics,International Journal of Electric Power and Energy Systems,3, July 1981, 127–133. doi:10.1016/0142-0615(81)90018-1
  81. [81] R.R. Shoultz, R. Klelm, & D. Maratukulam, Improved systemAGC performance with arc furnace steel mill loads, IEEETrans. on Power Systems, 13 (2), 1999, 630–635. doi:10.1109/59.667392
  82. [82] I. Valk, M. Vajta, L. Keviczky, et al., Adaptive load frequencycontrol of Hungarian power system, Automatica, 21 (2), 1985,129–137. doi:10.1016/0005-1098(85)90108-6
  83. [83] C.T. Pan & C.M. Liaw, An adaptive controller for power systemand load frequency control, IEEE Trans. Power Systems, 4 (1),1989, 122–128. doi:10.1109/59.32469
  84. [84] M.A. Sheirah & M.M. Abid-Ei-Fattah, Improved load frequencyself-tuning regulator, International Journal of Control, 39 (1),1984, 143–158. doi:10.1080/00207178408933155
  85. [85] A. Chandra, O.P. Malik, & G.S. Hope, A self tuning controllerfor the control of multi-machine power systems, IEEE Trans.,PAS (3), 1988, 1065–1071. doi:10.1109/59.14563
  86. [86] S. Jiong & C. Laijiu, On-line automatic tuning of a multivariablePID controller, Control Theory Applications (China), 12(4),1995, 509–514.
  87. [87] J. Kanniah, S.C. Tripathy, & O.P. Malik, Microprocessor basedadaptive load frequency control, Proc. IEE, 131 (C-4), 1984,128.
  88. [88] J.E. Van Ness, J.M. Bogle, & F.P. Imad, Sensitivities oflarge multiloop control systems, IEEE Trans., AC (10), 1965,308–315. doi:10.1109/TAC.1965.1098163
  89. [89] M.A. Pai & K. Ganesan, Relative stability of load frequencycontrol systems, IEEE Preprint 71TP583, 1971.
  90. [90] N.G. Malek, O.T. Tan, & P.M. Juich, Trajectory sensitivitydesign of load frequency control systems, Proc. IEE, 120,October 1973, 173.9
  91. [91] J.L. Willems, Sensitivity analysis of the optimum performanceof conventional load frequency control, IEEE Trans., PAS (93),1974, 1287–1291.
  92. [92] M.P. Soni & M.V. Hariharan, Minimum sensitivity design ofmegawatt frequency control systems, Proc. N.S.C., I.I.T., NewDelhi, India, November 1974, Article No. 41.
  93. [93] P. Kumar, K.E. Hole, & R.P. Aggarwal, Design of optimalcontroller for load frequency control with performance indexsensitivity minimization, Proc. IFAC Symp. on ComputerApplications in Large Scale Power Systems, New Delhi, India,1979, 73–82.
  94. [94] W.C. Chan & Y.Y. Hsu, Automatic generation control of in-terconnected power systems using variable structure controller,Proc. IEE, 128 (C-5), 1981, 269–280.
  95. [95] N.N. Bengiamin & W.C. Chan, Variable structure controlof electric power generation, IEEE Trans., PAS (101), 1982,376–380.
  96. [96] A.Y. Sivaramkrishna, M.V. Hariharan, & M.C. Srisailam,Design of variable structure load frequency controller usingpole assignment technique, International Journal of Control,40 (3),1984, 487–498. doi:10.1080/00207178408933289
  97. [97] A. Kumar, O.P. Malik, & G.S. Hope, Variable-structure-systemcontrol applied to AGC of an interconnected power system,Proc. IEE, 132 (C-1), 1985, 23–29.
  98. [98] O.P. Malik, A. Kumar, & G.S. Hope, A load frequencyalgorithm based on a generalized approach, IEEE Trans.,PAS3 (2), 1988, 375–382. doi:10.1109/59.192887
  99. [99] M.L. Kothari & J. Nanda, Variable structure controllers forAGC of interconnected power systems, JIE (India), 72, August1991, 89–92.
  100. [100] Q.P. Ha & H. Trinh, A variable structure-based controller withfuzzy tuning for load-frequency control, International Journalof Power and Energy Systems, 20 (2), 2000, 146–154.
  101. [101] Z.M. Al-Hamouz & H.N. Al-Duwaish, A new load frequencyvariable structure controller using genetic algorithms, ElectricPower Systems Research, 55, 2000, 1–6. doi:10.1016/S0378-7796(99)00095-4
  102. [102] A.J. Kovia & R.M. Burns, Optimum load frequency con-trol of interconnected power system with uncertainty, Proc.IEEE(PES) Summer Meeting & e.h.v/ u.h.v. Conf., Canada,1973, 461–1.
  103. [103] E. Tanaka & J. Asegawa, Robust load frequency control, Proc.IFAC Symp. on Power Systems and Power Plant Control,Seoul, Korea, August 22–25, 1989, 49–54.
  104. [104] A. Ismail, Robust load frequency control, Proc. IEEE Conf.on Control Applications, Dayton, OH, New York, September13–16, 1992, 634–635. doi:10.1109/CCA.1992.269774
  105. [105] A.M. Stankovic, G. Tadmor, & T.A. Sakharuk, On robustcontrol analysis and design for load frequency regulation, IEEETrans. on Power Systems, 13 (2), 1998, 449–454. doi:10.1109/59.667367
  106. [106] Y. Wang, R. Zhou, & C. Wen, Robust load-frequency controllerdesign for power systems, Proc. IEE, 140 (C)(1), 1993, 111–145.
  107. [107] Y. Wang, R. Zhou, & C. Wen, New robust adaptive loadfrequency control with system parameter uncertainties, Proc.IEE, 141 (3), 1994, 184–190.
  108. [108] Y. Wang, R. Zhou, & L. Gao, Robust power system load-frequency controller design based on H∞ optimization ap-proach, Optimal Control Applications & Methods, 16, 1995,59–69.
  109. [109] K.Y. Lim, Y.Y. Wang, & R.J. Zhou, Output-robust loadfrequency controller design for power systems, Proc. of Int.Power Engineering Conf. (IPEC’95), Singapore, March 1995,296–301.
  110. [110] J. Liu & R. Zhou, On performance-constrained stabilizationproblem in load-frequency control for power systems, Control& Computers (USA), 23(1), 1995, 26–31.
  111. [111] T.C. Yang, H. Cimen, & Q.M. Zhu, Decentralised load-frequency controller design based on structured singular values,IEE Proc. Generation, Transmission & Distribution, 145 (1),1998, 7–14. doi:10.1049/ip-gtd:19981716
  112. [112] IEEE Committee Report, Current operating problems associ-ated with automatic generation control, IEEE Trans., PAS (98),1979, 88–96.
  113. [113] A. Bose & I. Atiyyah, Regulation error in load frequencycontrol, IEEE Trans., PAS (99), 1980, 650–657.
  114. [114] R.P. Schulte, W.I. McReynolds, & D.E. Badley, Modifiedautomatic time error control and inadvertent interchange re-duction for the WSCC interconnected power systems, IEEETrans. on Power Systems (USA), 6(3), 1991, 904–913. doi:10.1109/59.119228
  115. [115] N. Jaleeli, L.S. Vanslyck, D.N. Ewart, L.H. Fink, & A.G.Hoffmann, Understanding automatic generation control, IEEETrans., PAS7 (3), 1992, 1106–1122. doi:10.1109/59.207324
  116. [116] D.C.H. Prowse, P. Koskela, T.A. Grove, & L.R. Larson,Experience with joint AGC regulation, IEEE Trans. on PowerSystems, 9 (4), 1994, 1974–1979. doi:10.1109/59.331458
  117. [117] D.P. Popovic & S.V. Mijailovic, An efficient methodology forthe analysis of frequency control of electric power systems,Electrical Power and Energy Systems, 22, 2000, 331–341. doi:10.1016/S0142-0615(99)00058-7
  118. [118] P.W. Kit, Artificial intelligence and neural network applica-tions in power systems, Proc. IEE Int. Conf. on Advances inPower System Control, Operation & Management, 1, HongKong, December 1993, 36–46.
  119. [119] B. Franoise, Y. Magid, & W. Bernard, Application of neuralnetworks to load-frequency control in power systems, NeuralNetworks, 7 (1), 1994, 183–194. doi:10.1016/0893-6080(94)90067-1
  120. [120] M. Djukanovic, M. Novicevic, D.J. Sobajic, & Y.P. Pao, Con-ceptual development of optimal load frequency control usingartificial neural networks and fuzzy set theory, InternationalJournal of Engineering Intelligent Systems for Electrical En-gineering and Communications, 3 (2), 1995, 95–108.
  121. [121] D.K. Chaturvedi, P.S. Satsangi, & P.K. Kalra, Load frequencycontrol: A generalised neural network approach, ElectricalPower and Energy Systems, 21, 1999, 405–415. doi:10.1016/S0142-0615(99)00010-1
  122. [122] C.S. Indulkar & B. Raj, Application of fuzzy controller toautomatic generation control, Electric Machines and PowerSystems, 23, 1995, 209–220. doi:10.1080/07313569508955618
  123. [123] A.E. Gegov & P.M. Frank, Decomposition of multivariablesystems for distributed fuzzy control [power system load fre-quency control], Fuzzy Sets System (The Netherlands), 73(3),1995, 329–340. doi:10.1016/0165-0114(94)00303-O
  124. [124] G.A. Chown & R.C. Hartman, Design and experience with afuzzy logic controller for automatic generation control (AGC),IEEE Trans. on Power Systems, 13 (3), 1998, 965–970. doi:10.1109/59.709084
  125. [125] J. Talaq & F. Al-Basri, Adaptive fuzzy gain scheduling forload frequency control, IEEE Trans. on Power Systems, 14 (1),1999, 145–150. doi:10.1109/59.744505
  126. [126] H.J. Kunisch, K.G. Kramer, & H. Dominik, Battery energystorage: Another option for load frequency control and instan-taneous reserve, IEEE Trans. on Energy Conversion, 1 (3),1986, 41–46.
  127. [127] S. Banerjee, J.K. Chatterjee, & S.C. Tripathy, Applicationof magnetic energy storage unit as load frequency stabilizer,IEEE Trans. on Energy Conversion, 5 (1), 1990, 46–51. doi:10.1109/60.50811
  128. [128] S.C. Tripathy, R. Balasubramaniam, & P.S. ChandramohananNair, Adaptive automatic generation control with supercon-ducting magnetic energy storage in power systems, IEEETrans. on Energy Conversion, 7 (3), 1992, 434–441. doi:10.1109/60.148563
  129. [129] C.F. Lu, C.C. Liu, & C.J. Wu, Effect of battery storage systemon load frequency control considering governor deadband andgeneration rate constraint, IEEE Trans. on Energy Conversion,10 (3), 1995, 555–565. doi:10.1109/60.464888
  130. [130] S.S. Tripathy & K.P. Juengst, Sampled data automatic gen-eration control with superconducting magnetic energy storagein power systems, IEEE Trans. on Energy Conversion, 12 (2),1997, 187–192. doi:10.1109/60.629702
  131. [131] N.N. Bengiamin & W.C. Chan, Three-level load frequencycontrol of power systems interconnected by asynchronous tielines, Proc. IEE, 126(11), 1979, 1198–1200.
  132. [132] S. Bhamidipati & A. Kumar, Load frequency control of aninterconnected system with DC tie-lines and AC-DC paralleltie-lines, Proc. 22nd Annual North American Power Symp.,Auburn, AL (published by IEEE Computer Society Press, LosAlamitos, CA, 1990), October 1990, 390–395.
  133. [133] P. Kumar & Ibraheem, Optimal AGC regulator design of a2-area power system with parallel AC/DC links, Proc. IranianConf. on Electrical Engineering (ICEE-93), Tehran, Iran, 1993,75–84.
  134. [134] P. Kumar & Ibraheem, Dynamic performance evaluation of2-area interconnected power systems: A comparative study,Journal of Institution of Engineers (India), EL-4 (78), 1997,199–209.10
  135. [135] R.P. Schulte, An automatic generation control modificationfor present demands on interconnected power systems, IEEETrans. on Power Systems, 11 (3), 1996, 1286–1294. doi:10.1109/59.535669
  136. [136] R.D. Christie & A. Bose, Load frequency control issues inpower system operations after deregulation, IEEE Trans. onPower Systems, 11 (3), 1996, 1191–1200. doi:10.1109/59.535590
  137. [137] G.J. Kumar, K.H. Ng, & G. Sheble, AGC simulator for price-based operation, Part 1 & Part 2, IEEE Trans. on PowerSystems, 12 (2), 1997, 527–538. doi:10.1109/59.589593
  138. [138] B.H. Bakken & O.S. Grande, Automatic generation control ina deregulated power system, IEEE Trans. on Power Systems,13 (4), 1998, 1401–1406. doi:10.1109/59.736283

Important Links:

Go Back