FORWARD POSITION ANALYSIS OF THE SP-PS-RS ARCHITECTURES

R. Di Gregorio

References

  1. [1] V.E. Gough, Contribution to discussion to papers on researchin automobile stability and control and in tyre performance, byCornell Staff, Proc. of the Institution of Mechanical Engineers(IMechE), vol. 171, 1956, 392–395.
  2. [2] D. Stewart, A platform with six degrees of freedom, Proc. ofthe Institution of Mechanical Engineers (IMechE), 180 (Part1), no. 15, 1965, 371–376. doi:10.1243/PIME_PROC_1965_180_029_02
  3. [3] T. Higuchi, A. Ming, & J. Jiang-Yu, Application of multi-dimensional wire crane in construction, Proc. 5th Int. Symp.on Robotics in Construction, ISARC’88, Tokyo, 1988, 661–668.
  4. [4] T. Arai, K. Cleary, K. Homma, H. Adachi, & T. Nakamura,Development of parallel link manipulator for undergroundexcavation task, Proc. 1991 Int. Sym. on Advanced RobotTechnology, Tokyo, 1991, 541–548.
  5. [5] J. Albus, R. Bostelman, & N. Dagalakis, The NISTROBOCRANE, Journal of Robotic Systems, 10 (5), 1993,709–724. doi:10.1002/rob.4620100509
  6. [6] B.V. Viscomi, W.D. Michalerya, & L.-W. Lu, Automated construction in the ATLSS integrated building systems, Automation in Construction, 3 (1), 1994, 35–43. doi:10.1016/0926-5805(94)90030-2
  7. [7] R. Bostelman, J. Albus, N. Dagalakis, & A. Jacoff,ROBOCRANE project: An advanced concept for large scalemanufacturing, Proc. 1996 Int. Conf. of the Association forUnmanned Vehicle Systems, Orlando, FL, 1996, 509–521.
  8. [8] C.M. Gosselin & J. Angeles, The optimum kinematic design ofa planar three-degree-of-freedom parallel manipulator, ASMEJournal of Mechanisms, Transmission and Automation inDesign, 110 (2), 1988, 35–41.
  9. [9] R. Clavel, DELTA: A fast robot with parallel geometry, Proc.18th Int. Symp. on Industrial Robots, Sydney, Australia, 1988,91–100.
  10. [10] L.W. Tsai, Kinematics of a three-dof platform with threeextensible limbs, in J. Lenarcic & V. Parenti-Castelli (Eds.),Recent advances in robot kinematics (Dordrecht: Kluwer,1996), 401–410.
  11. [11] R.E. Stamper, L.W. Tsai, & G.C. Walsh, Optimization of athree dof translational platform for well-conditioned workspace,Proc. IEEE Int. Conf. on Robotics and Automation, Albuquerque, New Mexico, 1997, 3250–3255. doi:10.1109/ROBOT.1997.606784
  12. [12] R. Di Gregorio & V. Parenti-Castelli, A translational 3-dofparallel manipulator, in J. Lenarcic & M.L. Husty (Eds.),Advances in robot kinematics: Analysis and control (Dordrecht:Kluwer, 1998), 49–58.
  13. [13] R. Di Gregorio, Closed-form solution of the position analysisof the pure translational 3-RUU parallel mechanism, Proc. 8thSymp. on Mechanisms and Mechanical Transmissions, MTM2000, Timisoara, Romania, vol. 1, 2000, 119–124.
  14. [14] X. Kong & C.M. Gosselin, Type synthesis of 3-DOF translational parallel manipulators based on screw theory, ASMEJournal of Mechanical Design, 126 (1), 2004, 83–92. doi:10.1115/1.1637662
  15. [15] C.M. Gosselin & J. Angeles, The optimum kinematic designof a spherical three-degree-of-freedom parallel manipulator,ASME Journal of Mechanisms, Transmission and Automationin Design, 111 (2), 1989, 202–207.
  16. [16] S.K. Agrawal, G. Desmier, & S. Li, Fabrication and analysisof a novel 3-dof parallel wrist mechanism, ASME Journal ofMechanical Design, 117 (2A), 1995, 343–345. doi:10.1115/1.2826145
  17. [17] M. Karouia & J.M. Herv´e, A three-dof tripod for generatingspherical rotation, in J. Lenarcic & M.M. Stanisic (Eds.),Advances in robot kinematics (Dordrecht: Kluwer, 2000),395–402.
  18. [18] R. Di Gregorio, Kinematics of a new spherical parallel manipulator with three equal legs: The 3-URC wrist, Journal ofRobotic Systems, 18 (5), 2001, 213–219. doi:10.1002/rob.1017
  19. [19] M. Karouia & J.M. Hervé, A family of novel orientational3-DOF parallel robots, Proc. RoManSy’14, Udine, Italy, 2002,359–368.
  20. [20] X. Kong & C.M. Gosselin, Type synthesis of 3-DOF sphericalparallel manipulators based on screw theory, ASME Journalof Mechanical Design, 126 (1), 2004, 101–108. doi:10.1115/1.1637655
  21. [21] M. Karouia & J.M. Hervé, New parallel wrists: Special limbswith motion dependency, in J. Lenarcic & C. Galletti (Eds.),On advances in robot kinematics (Dordrecht: Kluwer, 2004),371–380.
  22. [22] M. Ceccarelli, A new three d.o.f. spatial parallel mechanism,Mechanism and Machine Theory, 32 (8), 1997, 896–902. doi:10.1016/S0094-114X(97)00019-0
  23. [23] R. Di Gregorio & V. Parenti-Castelli, Position analysis inanalytical form of the 3-PSP mechanism, ASME Journal ofMechanical Design, 123 (2), 2001, 51–55. doi:10.1115/1.1324670
  24. [24] J.M. Hervé, Parallel mechanisms with pseudo-planar motiongenerators, in J. Lenarcic & C. Galletti (Eds.), On advancesin robot kinematics (Dordrecht: Kluwer, 2004), 431–440.
  25. [25] L.-W. Tsai, Robot analysis: The mechanics of serial andparallel manipulators (New York: John Wiley & Sons, 1999),14.
  26. [26] C. Innocenti & V. Parenti-Castelli, Exhaustive enumeration offully-parallel kinematic chains, Proc. ASME 1994 Int. AnnualWinter Meeting, Vol. 55-2 (Dynamic System and Control),Chicago, 1994, 1135–1141.
  27. [27] C.W. Wampler, Forward displacement analysis of general six-in-parallel SPS (Stewart) platform manipulators using Somacoordinates, Mechanism and Machine Theory, 31 (3), 1996,331–337. doi:10.1016/0094-114X(95)00068-A
  28. [28] M.L. Husty, An algorithm for solving the direct kinematicsof general Stewart-Gough platforms, Mechanism and MachineTheory, 31 (4), 1996, 365–380. doi:10.1016/0094-114X(95)00091-C
  29. [29] C. Innocenti, Forward kinematics in polynomial form of thegeneral Stewart platform, ASME Journal of Mechanical Design,123 (2), 2001, 254–260. doi:10.1115/1.1348018
  30. [30] T.-Y. Lee & J.-K. Shim, Forward kinematics of the general6-6 Stewart platform using algebraic elimination, Mechanismand Machine Theory, 36 (10), 2001, 1073–1085. doi:10.1016/S0094-114X(01)00034-9
  31. [31] C. Innocenti & V. Parenti-Castelli, Direct position analysisof the Stewart platform mechanism, Mechanism and MachineTheory, 25 (6), 1990, 611–621. doi:10.1016/0094-114X(90)90004-4
  32. [32] C. Innocenti & V. Parenti-Castelli, Direct kinematics of thereverse Stewart platform mechanism, Proc. 1991 IFAC Symp.on Robot Control, Syroco’91, Vienna, Austria, 1991, 75–80.
  33. [33] V. Parenti-Castelli & C. Innocenti, Direct displacement analysisfor some classes of spatial parallel mechanisms, Proc. 8thCISM-IFToMM Symp. on Theory and Practice of Robots andManipulators, Cracow, 1990, 126–133.
  34. [34] V. Parenti-Castelli & C. Innocenti, Forward displacementanalysis of parallel mechanisms: Closed form solution of PRR-3S and PPR-3S structures, ASME Journal of MechanicalDesign, 114 (1), 1992, 68–73.
  35. [35] R. Di Gregorio, Direct position analysis of parallel manipulatorswhich generate SP-2PS structures, ROBOTICA, 23 (4), 2005,521–526. doi:10.1017/S0263574704001109
  36. [36] R. Di Gregorio, Analytic form solution of the direct positionanalysis of a wide family of three-legged parallel manipulators,ASME Journal of Mechanical Design, 128 (1), 2006, 264–271.300 doi:10.1115/1.1913703
  37. [37] R. Di Gregorio, Analytic form solution of the forward positionanalysis of three-legged parallel mechanisms generating SR-PS-RS structures, Mechanism and Machine Theory, 2005, inpress.AppendixIf n0 and n1 simultaneously vanish, then (10) yield:p1 = (g2 + j21 )(j1p4 − p3) + j1(g2p4 + p2) (A.1)p0 = −g2[j1(j1p4 − p3) + g2p4 + p2] (A.2)The substitution of expressions (A.1) and (A.2) for p1and p0, respectively, into (7) yields:p4(a2)2+ p3(a2)a + p2(a2) + a[(g2 + j12)(j1p4 − p3)+ j1(g2p4 + p2)] − g2[j1(j1p4 − p3) + g2p4 + p2] = 0(A.3)Equation (A.3) can be factorized as follows (note that,if we expand (A.3) and (A.4), the resulting equationscoincide):[p4a2+ (p3 − j1p4)a + g2p4 + p2 + j1(j1p4 − p3)]× (a2+ j1a − g2) = 0 (A.4)If the second factor of the expression at the left-handside of (A.4) is equated to zero, an equation that coincideswith (3c) is obtained, which proves that, if n0 and n1simultaneously vanish, (3c) is contained in (7).

Important Links:

Go Back