PD CONTROL OF ROBOT WITH VELOCITY ESTIMATION AND UNCERTAINTIES COMPENSATION

W. Yu and X. Li

References

  1. [1] M. Spong & M. Vidyasagar, Robot dynamics and control (NewYork: Wiley, 1989).
  2. [2] R. Ortega & M.W. Spong, Adaptive motion control of rigidrobot: A tutorial, Automatica, 25 (6), 1989, 877–888. doi:10.1016/0005-1098(89)90054-X
  3. [3] Y.H. Kim & F.L. Lewis, Neural network output feedbackcontrol of robot manipulator, IEEE Trans. Neural Networks,15, 1999, 301–309. doi:10.1109/70.760351
  4. [4] R. Kelly, Global positioning on robot manipulators via PDcontrol plus a classs of nonlinear integral actions, IEEE Trans.Automatic Control, 43 (7), 1998, 934–938. doi:10.1109/9.701091
  5. [5] C. Canudas de Wit & J.J.E. Slotine, Sliding observers forrobot manipulator, Automatica, 27 (5), 1991, 859–864. doi:10.1016/0005-1098(91)90041-Y
  6. [6] C. Canudas de Wit & N. Fixot, Adaptive control of robotmanipulators via velocity estimated feedback, IEEE Trans. onAutomatic Control, 37, 1992, 1234–1237. doi:10.1109/9.151115
  7. [7] H. Berghuis & H. Nijmeijer, A passivity approach to controller-observer design for robots, IEEE Trans. on Robotics andAutomation, 9, 1993, 740-754. doi:10.1109/70.265918
  8. [8] S. Nicosia & A. Tornambe, High-gain observers in the state andparameter estimation of robots having elastic joins, System &Control Letters, 13, 1989, 331–337. doi:10.1016/0167-6911(89)90121-7
  9. [9] M. Takegaki & S. Arimoto, A new feedback method for dynamiccontrol of manipulator, ASME Journal of Dynamic Systems,Measurement, and Control, 103, 1981, 119–125.
  10. [10] F.L. Lewis & T. Parisini, Neural network feedback control withguaranteed stability, International Journal of Control, 70 (3),1998, 337–339. doi:10.1080/002071798222262
  11. [11] W. Yu, A.S. Poznyak & E.N. Sanchez, Neural adaptive controlof two-link manipulator with sliding mode, IEEE Int. Conf.on Robotics and Automation, Vol. 4, Detroit, 1999, 3122–3127. doi:10.1109/ROBOT.1999.774073
  12. [12] P. Tomei, Adaptive PD controller for robot manipulator, IEEETrans. on Automatic Control, 36, 1992, 556–570. doi:10.1109/70.86088
  13. [13] S. Arimoto, Fundamental problems of robot control: Part 1:Innovations in the realm of robot servo-loops, Robotica, 13,1995, 19–27.
  14. [14] H. Yazarel, C.C. Cheah & H.C. Liaw, Adaptive SP-D controlof robotic manipulators in the presence of modeling error in agravity regressor matrix: theory and experiment, IEEE Trans.on Robotics and Automation, 18 (3), 2002, 373–379. doi:10.1109/TRA.2002.1019473
  15. [15] R. Kelly, A tuning procedure for stable PID control of robotmanipulators, Robotica, 13, 1995, 141–148.
  16. [16] V. Santibanez & R. Kelly, Global asymptotic stability of thePD control with computed feedforward in closed loop withrobot manipulators, Proc. 14th IFAC World Congress, Beijing,1999, 197–203.
  17. [17] S. Haykin, Neural networks: A comprehensive foundation (NewYork: Macmillan, 1994).
  18. [18] C.I. Byrnes, A. Isidori & J.C. Willems, Passivity, feedbackequivalence, and the global stabilization of minimum phasenonlinear systems, IEEE Trans. Automatic Control, 36, 1991,1228–1240. doi:10.1109/9.100932
  19. [19] G. Cybenko, Approximation by superposition of sigmoidalactivation function, Mathematics of Control Siginals, andSystems, 2, 1989, 303–314. doi:10.1007/BF02551274
  20. [20] W. Yu & X. Li, Some new results on system identificationwith dynamic neural networks, IEEE Trans. Neural Networks,12 (2), 2001, 412–417. doi:10.1109/72.914535
  21. [21] E.D. Sontag & Y. Wang, On characterization of the input-to-state stability property, System & Control Letters, 24, 1995,351–359. doi:10.1016/0167-6911(94)00050-6

Important Links:

Go Back