MODELLING AND PREDICTIVE CONTROL OF A MULTIVARIABLE PROCESS USING RECURRENT NEURAL NETWORKS

N. Sivakumaran and T.K. Radhakrishnan

References

  1. [1] R.K. Pearson, Selecting nonlinear model structures for computer control, Journal of Process Control, 13 (1), 2003, 1–26. doi:10.1016/S0959-1524(02)00022-7
  2. [2] K.H. Johansson & J.L.R. Nunes, A multivariable laboratory process with an adjustable zero, Proc. 17th American Control Conference, Philadelphia, PA, 1998.
  3. [3] K.S. Narendra & K. Parthasarathy, Identification and control of dynamic systems using neural networks, IEEE Transactions on Neural Networks, 1 (1), 1990, 4–27. doi:10.1109/72.80202
  4. [4] K. Narendra & K. Parthasarathy, Gradient methods for optimization of dynamical systems containing neural networks, IEEE Transactions on Neural Network, 2 (2), 1991, 252–262. doi:10.1109/72.80336
  5. [5] B.A. Pearlmutter, Dynamic recurrent neural networks, Technical report CMU-CS-90-196, School of Computer science, Carnegie Mellon University, December 1990.
  6. [6] F. Declercq & De Keyser, Comparative study of neural predictors in model based predictive control, IEEE Conf., www.rug.ac.be (accessed March 1996).
  7. [7] P. Gil, J. Henriques, A. Dourado, & H. Duarte-Ramos, Constrained neural model predictive control with guaranteed free offset, Proc. of IEEE Int. Conf. on Industrial Electronics, Control and Implementation – IEECON, Japan, 2000, 1991–1996.
  8. [8] H.T. Su, T.J. McAvoy, & P. Werbos, Long-term predictions of chemical processes using recurrent neural networks: a parallel training approach, Industrial & Engineering Chemistry Research, 31, 1992, 1338–1352. doi:10.1021/ie00005a014
  9. [9] M. Lazar & O. Pastravanu, A neural predictive controller for nonlinear systems, Department of Automatic Control and Industrial Informatics, Technical University "Gh. Asachi of Iasi, Blvd. Mangeron, Romania.
  10. [10] A.C. Parlos, O.T. Rais, & A.F. Atiya, Multi step-ahead prediction using dynamic recurrent neural networks, Neural Networks, 13, 2000, 765–786. doi:10.1016/S0893-6080(00)00048-4
  11. [11] J. Henriques, P. Gil, A. Dourado, & H. Duarte-Ramos, Application of a recurrent neural network in on-line modeling of real-time systems, Informatics Engineering Department, UC, P´olo II, 3030 Coimbra, Portugal, http://www.dei.uc.pt (accessed December 2001).
  12. [12] J. Henriques & A. Dourado, A multivariable adaptive control using a recurrent neural network, Proc. Eann98 – Engineering Applications of Neural Networks, Gibraltar, 1998, 118–121.
  13. [13] K.O. Temang, P.D. Schnelle, & T.J. McAvoy, Model predictive control of an industrial packed bed reactor using neural networks, Journal of Process Control, 5 (1), 1995, 9–27. doi:10.1016/0959-1524(95)95941-6
  14. [14] E.F. Camacho & C. Bordons, Model predictive control (London: Springer, 1999).
  15. [15] R. Williams & D. Zipser, Gradient-based learning algorithms for recurrent networks and their computational complexity, in Y. Chauvin & D. Rumelhart (Eds.), Back propagation: Theory, architectures and applications, Chapter 13 (1995), 433–486.
  16. [16] R. Viknesh, N. Sivakumaran, J.S. Chandra, & T.K. Radhakrishnan, A critical study of decentralized controllers for multivariable system, Chemical Engineering and Technology (Wiley-VCH), 27 (8), 2004, 880–889. doi:10.1002/ceat.200402034
  17. [17] J.S. Lin, S.S. Jang, S.S. Shieh, & M. Subramaniam, Generalized multivariable dynamic artificial neural network modeling for chemical processes, Industrial & Engineering Chemistry Research, 38, 1999, 4700–4711. doi:10.1021/ie990312e

Important Links:

Go Back