ONLINE PERTURBATION ANALYSIS AND CONTROL OF TANDEM 2-CLASS BUFFERS USING STOCHASTIC FLUID MODELS

S. Nosrati and M. Sabaei

References

  1. [1] Y. Wardi & B. Melamed, Variational bounds and sensitivityanalysis of continuous flow models, Journal of Discrete EventDynamic Systems, 11(3), 2001, 249–282. doi:10.1023/A:1011257222927
  2. [2] C.G. Cassandras, Y.Wardi, B. Melamed, G. Sun et al., Pertur-bation analysis for on-line control and optimization of stochas-tic fluid models, IEEE Transactions on Automatic Control,47 (8), August 2002, 1234–1248. doi:10.1109/TAC.2002.800739
  3. [3] Y. Wardi, B. Melamed, C. Cassandras, & C. Panayiotou,IPA gradient estimators in single-node stochastic fluid models,Journal of Optimization Theory and Applications, 115 (2),2002, 369–406. doi:10.1023/A:1020892306506
  4. [4] C.G. Cassandras, G. Sun, C.G. Panayiotou, & Y. Wardi,Perturbation analysis and control of two-class stochastic fluidmodels for communication networks, IEEE Transactions onAutomatic Control, 48 (5), May 2003, 770–782. doi:10.1109/TAC.2003.811253
  5. [5] G. Sun, C.G. Cassandras, & C.G. Panayiotou, Perturbationanalysis of a 2-class stochastic fluid model with finite buffercapacity, Proc. 41st IEEE Conf. on Decision and Control,2002, 2171–2176.
  6. [6] Y. Wardi & B. Melamed, Estimating nonparametric IPAderivatives of loss functions in tandem fluid models, Proc.40th IEEE Conf. on Decision and Control, Ontario, FL, 2001,4517–4522.
  7. [7] Y. Ho & X. Cao, Perturbation analysis of discrete eventdynamic systems (Boston, MA: Kluwer, 1991).
  8. [8] C.G. Cassandras & S. Lafortune, Introduction to discrete eventsystems (Boston, MA: Kluwer, 1999).
  9. [9] Y. Wardi & G.F. Riley, IPA for loss volume and buffer workloadin tandem SFM networks, Proc. 6th International Workshopon Discrete Event Systems (WODES‘02), July 2002, 1–6.55
  10. [10] H.J. Kushner & D.S. Clark, Stochastic approximation forconstrained and unconstrained systems (Berlin, Germany:Springer-Verlag, 1978).
  11. [11] R.Y. Rubinstein & A. Shapiro, Discrete event systems: sensi-tivity analysis and stochastic optimization by the score functionmethod (New York: Wiley, 1993).
  12. [12] Sh. Nosrati & M. Sabaei, Infinitesimal perturbation analysisof tandem two-class stochastic fluid models, Technical Report,Department of Computer Engineering, AUT, Tehran, July2004.

Important Links:

Go Back