M. Cacciola, D. Costantino, F.C. Morabito, and M. Versaci
[1] R. Dendy, (Ed.), Plasma Physics: An Introductory Course,(Cambridge: Cambridge University Press, 1995); D. Wrob-lewsky, Neural network evaluation of tokamak current profilesfor real time control, Rev. Sci. Instr., 68, 1997, 1281. [2] J. Wesson, Tokamaks (Oxford, USA: Oxford University Press,1987). [3] F.C. Morabito, M. Versaci, G. Pautasso, C. Tichmann, &ASDEX upgrade team, Fuzzy-neural approach to the predictionof disruptions in ASDEX upgrade, Nuclear Fusion, 41, 2001,1715–1722. [4] F.C. Morabito & M. Versaci, Fuzzy time series approachfor disruption prediction in Tokamak reactors, III Trans. onMagnetics, 39 (3), 2003, 1503–1506. doi:10.1109/TMAG.2003.810365 [5] F. Salzedas, A.A.M. Oomens, R.W. Polman, F.C. Sch¨uller, &the RTP team, Controlled fusion and plasma physics, Proc.25th Eur. Conf. Prague, Vol. 22, European Physical Society,Geneva, 1998. [6] A. Vannucci, K.A. Oliveira, & T. Tajima, Forecast of TEXTplasma disruptions using soft X rays as input signal in a neuralnetwork, Nuclear Fusion, 39, 1999, 255. doi:10.1088/0029-5515/39/2/308 [7] F.C. Morabito & M. Versaci, Plasma evolution control withneuro-fuzzy techniques, Proceeding of European Conference onControl, Karlsruhe, 1999, acta on CD-Rom. [8] F.C. Morabito & M. Versaci, A fuzzy neural approach toplasma disruption prediction in Tokamak reactors, Proceedingof Joint International Conference on Neural Networks, IJCNN,Washington, USA, July, 1999, acta on CD-Rom. [9] M. Yokoyama, J.D. Callen, & C.C. Hegna, Effect of modeloking on toroidal flow evolution, Nuclear Fusion, 36, 1996,1307–1315. doi:10.1088/0029-5515/36/10/I04 [10] H.S. Strogatz, Nonlinear dynamics and chaos: With applica-tions to Physics, Biology, Chemistry, and Engineering, PerseusBooks Group, Boulder, CO, USA, 2000. [11] F. Takens, Detecting strange attractors in turbulence. In: RandD.A., Young L.S., (eds.), Dynamical system and turbulence,Lecture notes on mathematics, Berlin, Sapringer, 898, 1981,366–381. [12] P. Matjaˇz, The dynamics of human gait, European Journal ofPhysics, 26, 2005, 525–534. doi:10.1088/0143-0807/26/3/017 [13] M.B. Kennel, R. Brown, & H.D.I. Abarbanel, Determiningembedding dimension for phase-space reconstruction using ageometrical construction, Phys. Rev. A, 45, 1992, 3403. doi:10.1103/PhysRevA.45.3403 [14] P. Grassberger & I. Procaccia, Measuring the strangeness ofstrange attractor, Physica D, 9 1983, 189–208. doi:10.1016/0167-2789(83)90298-1 [15] F.C. Morabito & M. Versaci, The disruption prediction problemin Tokamak reactors: A fuzzy neural simulation and modelingenvironment, Proc. of the IASTED Conference on Modeling andSimulation, MS2000, Las Palmas, Canary Islands, September2000, pp. 579–586. [16] C. Bishop, Pattern recognition and neural networks (Oxford,USA: Oxford University Press, 1995). [17] J.R. Jang, ANFIS: Adaptive-network-based fuzzy inferencesystem, IEEE Trans. on Systems, Man, and Cybernetics,23 (3), 1993, 665–685. doi:10.1109/21.256541 [18] F.C. Morabito & M. Campolo, Ill-posed problems in electro-magnetics: Advantages of neuro-fuzzy approaches, 2nd Intl.Symp. on Neuro-Fuzzy Systems, EPFL, Lausanne, CH, August,1996.
Important Links:
Go Back