Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
SOFT COMPUTING AND CHAOS THEORY FOR DISRUPTION PREDICTION IN TOKAMAK REACTORS
M. Cacciola, D. Costantino, F.C. Morabito, and M. Versaci
References
[1] R. Dendy, (Ed.), Plasma Physics: An Introductory Course,(Cambridge: Cambridge University Press, 1995); D. Wrob-lewsky, Neural network evaluation of tokamak current profilesfor real time control, Rev. Sci. Instr., 68, 1997, 1281.
[2] J. Wesson, Tokamaks (Oxford, USA: Oxford University Press,1987).
[3] F.C. Morabito, M. Versaci, G. Pautasso, C. Tichmann, &ASDEX upgrade team, Fuzzy-neural approach to the predictionof disruptions in ASDEX upgrade, Nuclear Fusion, 41, 2001,1715–1722.
[4] F.C. Morabito & M. Versaci, Fuzzy time series approachfor disruption prediction in Tokamak reactors, III Trans. onMagnetics, 39 (3), 2003, 1503–1506.
doi:10.1109/TMAG.2003.810365
[5] F. Salzedas, A.A.M. Oomens, R.W. Polman, F.C. Sch¨uller, &the RTP team, Controlled fusion and plasma physics, Proc.25th Eur. Conf. Prague, Vol. 22, European Physical Society,Geneva, 1998.
[6] A. Vannucci, K.A. Oliveira, & T. Tajima, Forecast of TEXTplasma disruptions using soft X rays as input signal in a neuralnetwork, Nuclear Fusion, 39, 1999, 255.
doi:10.1088/0029-5515/39/2/308
[7] F.C. Morabito & M. Versaci, Plasma evolution control withneuro-fuzzy techniques, Proceeding of European Conference onControl, Karlsruhe, 1999, acta on CD-Rom.
[8] F.C. Morabito & M. Versaci, A fuzzy neural approach toplasma disruption prediction in Tokamak reactors, Proceedingof Joint International Conference on Neural Networks, IJCNN,Washington, USA, July, 1999, acta on CD-Rom.
[9] M. Yokoyama, J.D. Callen, & C.C. Hegna, Effect of modeloking on toroidal flow evolution, Nuclear Fusion, 36, 1996,1307–1315.
doi:10.1088/0029-5515/36/10/I04
[10] H.S. Strogatz, Nonlinear dynamics and chaos: With applica-tions to Physics, Biology, Chemistry, and Engineering, PerseusBooks Group, Boulder, CO, USA, 2000.
[11] F. Takens, Detecting strange attractors in turbulence. In: RandD.A., Young L.S., (eds.), Dynamical system and turbulence,Lecture notes on mathematics, Berlin, Sapringer, 898, 1981,366–381.
[12] P. Matjaˇz, The dynamics of human gait, European Journal ofPhysics, 26, 2005, 525–534.
doi:10.1088/0143-0807/26/3/017
[13] M.B. Kennel, R. Brown, & H.D.I. Abarbanel, Determiningembedding dimension for phase-space reconstruction using ageometrical construction, Phys. Rev. A, 45, 1992, 3403.
doi:10.1103/PhysRevA.45.3403
[14] P. Grassberger & I. Procaccia, Measuring the strangeness ofstrange attractor, Physica D, 9 1983, 189–208.
doi:10.1016/0167-2789(83)90298-1
[15] F.C. Morabito & M. Versaci, The disruption prediction problemin Tokamak reactors: A fuzzy neural simulation and modelingenvironment, Proc. of the IASTED Conference on Modeling andSimulation, MS2000, Las Palmas, Canary Islands, September2000, pp. 579–586.
[16] C. Bishop, Pattern recognition and neural networks (Oxford,USA: Oxford University Press, 1995).
[17] J.R. Jang, ANFIS: Adaptive-network-based fuzzy inferencesystem, IEEE Trans. on Systems, Man, and Cybernetics,23 (3), 1993, 665–685.
doi:10.1109/21.256541
[18] F.C. Morabito & M. Campolo, Ill-posed problems in electro-magnetics: Advantages of neuro-fuzzy approaches, 2nd Intl.Symp. on Neuro-Fuzzy Systems, EPFL, Lausanne, CH, August,1996.
Important Links:
Abstract
DOI:
10.2316/Journal.205.2008.2.205-4555
From Journal
(205) International Journal of Modelling and Simulation - 2008
Go Back