Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
LATERAL MOVEMENT CONTROL DESIGN WITH ACCELERATION AND LANE ANGLE ALGORITHMS FOR FWS GROUND VEHICLES
B.-F. Wu and S.-M. Chang
References
[1] J. Ackermann, Robust control prevents car skidding, IEEEControl Systems Magazine, 1997, 23–31.
[2] J. Ackermann, Robust decoupling of car steering dynamics witharbitrary mass distribution, Proc. American Control Conf.,Baltimore, MD, June 1994, 1964–1968.
[3] J. Ackermann, J. Guldner, W. Sienel, R. Steinhauser et al.,Linear and nonlinear controller design for robust automaticsteering, IEEE Transactions on Control Systems Technology,3 (1), 1995, 132–142.
[4] B.A. G¨uven¸c, T. B¨unte, D. Odenthal, & L. G¨uven¸c, Robusttwo degree of freedom vehicle steering controller design, Proc.American Control Conf., Arlington, June 2001, 13–18.
[5] J.C. Whitehead, Rear wheel steering dynamics compared tofront steering, Journal of Dynamic Systems, Measurement,and Control, 112, 1990, 88–93.
[6] J. Guldner, H.S. Tan, & S. Patwardhan, Study of designdirections for lateral vehicle control, Proc. 36th Conf. onDecision and Control, San Diego, CA, USA, December 1997,4732–4737.
[7] C. Chen & H.S. Tan, Steering control of high speed vehicles:dynamic look ahead and yaw rate feedback, Proc. 37th Conf.on Decision and Control, Tampa, FL, USA, December 1998,1025–1030.
[8] D.H. Weir & D.T. McRuer, Dynamics of driver vehicle steeringcontrol, Automatica, 6, 1970, 87–98 (Pergamon Press).
[9] J. Ackermann, Robust decoupling ideal steering dynamics andyaw stabilization of 4WS cars, Automatica, 30 (11), 1994,1761–1768.
[10] J. Ackermann & T. B¨unte, Handling improvement for robustlydecoupled car steering dynamics, 4th IEEE MediterraneanConf. on Control and Automation, Crete, 1996, 83–88.
[11] J.Y. Wang, The theory of ground vehicles (New York: Wiley,2001).278Appendix AThe system dynamics model of the vehicle motion isgiven by:˙β˙γ˙φ˙ϕ˙yL˙δC=a11 a12 0 0 0 b11a21 a22 0 0 0 b21a11 1 + a12 0 0 0 b110 1 0 0 0 00 0 U 0 0 0a61 a62 0 0 0 0βγφϕyLδC+b11b21b1100b61KLF rpath (A.1)where a61 = a11(1 − Ukmdc) + a21Lf ((1/U) − kmdc), a62 =a12(1 − Ukmdc) − Ukmdc + a22Lf ((1/U) − kmdc) and b61 =b11(1 − Ukmdc) + b21Lf ((1/U) − kmdc) + KP ref kmdc. Thevehicle motions are shown asβ(s)rpath(s)=NβD,γ(s)rpath(s)=NγD,φ(s)rpath(s)=Nφs · D,ϕ(s)rpath(s)=Nϕs · D,yL(s)rpath(s)=NyLs2 · DandδC(s)rpath(s)=NδCDwhereNβ = KLF Cf (−mU2Lf + CrLrL + mLf LrUs)(Cf L + mULrs + kmdcKP ref mLrU − Cf LkmdcU)Nγ = UKLF Cf (mLf Us + CrL)(Cf L + mULrs− Cf kmdcUL + kmdcKP ref mLrU)Nφ = KLF Cf (mULf Lrs2+ CrLrLs + CrUL)(mLrUs+ Cf L − UCf kmdcL + kmdcKP ref mLrU)Nϕ = Nγ, NyL= UNφNδC= LrKLF Cf mU(−mU2Cf Lf kmdcL+ Lrm2U2Lf kmdcKP ref + mULf Cf L)s2+ (−Cf CrkmdcUL2+ Cf CrL2− Cf Lf mU2+ LrLmUCrkmdcKP ref )s+ (CrLr − Cf Lf )mU2kmdcKP ref+ L2Cf CrkmdcKP ref − CrLU2Cf kmdcandD = m3U3L2rLf s3+ m2U2LrL(Cf Lf + CrLr)s2+ [mUCf L2(CrLr + Cf Lf ) − mC2f U2Lf kmdcL2+ CrL2rm2U3]s + [C2f CrL3− kmdcUC2f CrL3+ mU2Cf L(CrLr − Cf Lf ) + mC2f kmdcU3Lf L]The state variable ˙δC, derived from (24), is expressedas:˙δC =afU+ kmdc(KP ref δS − af ) − γ = kmdcKP ref δS+1U− kmdcaf − γ = kmdcKP ref δS+ (1 − Ukmdc)( ˙β + γ) +1U− kmdcLf ˙γ − γ= kmdcKP ref δS + (1 − Ukmdc) ˙β + (1 − Ukmdc)γ+1U− kmdcLf ˙γ − γ= kmdcKP ref δS + (1 − Ukmdc)(a11β + a12γ + b11δS)+ (1 − Ukmdc)γ +1U− kmdcLf (a21β + a22γ+ b21δS) − γ=a11(1 − Ukmdc) + Lf a211U− kmdcβ+a12(1 − Ukmdc) − Ukmdc + Lf a221U− kmdcγ+b11(1 − Ukmdc) + Lf b211U− kmdc+kmdcKP refδSAppendix BThe vehicle model is shown in (B.1) as:˙β˙γ =a11 a12a21 a22βγ +b11b21δC (B.1)Furthermore, when (B.1) is transferred to (B.2) with thefirst differentiation of the sideslip angle at the front axle( ˙βf = ˙β + (Lf /U)˙γ), the state variables ˙βf and ˙γ can beobtained:˙βf −LfU ˙γ˙γ =a11 a12a21 a22βf −LfU γγ +b11b21δC(B.2)Rearranging (B.2) to yield:˙βf −LfU ˙γ˙γ =a11 a12 − a11LfUa21 a22 − a21LfUβfγ +b11b21δC(B.3)and multiplying by the factor Lf /U into ˙γ, it obtains˙βf −LfU ˙γLfU ˙γ =a11 a12 − a11LfUa21LfU (a22 − a21LfU )LfUβfγ+b11b21LfUδC (B.4)279To eliminate (Lf /U)˙γ, two state equations in (B.4) areincorporated as:˙βfLfU ˙γ =a11 + a21LfU a12 − a11LfU + (a22 − a21LfU )LfUa21LfU (a22 − a21LfU )LfU×βfγ +b11 + b21LfUb21LfUδC (B.5)Finally, the second state ˙γ in above expression is dividedby the factor (Lf /U) resulting in˙βf˙γ =a11 + a21LfU a12 − a11LfU + a22LfU − a21LfU2a21 a22 − a21LfU×βfγ +b11 + b21LfUb21δC (B.6)The relationship, I := mLf Lr, is included in (B.6) andthen its expression can be simplified as:˙βf˙γ =−2Cf LmULr−1−2 (Lf Cf − LrCr)mLf Lr−2CrLmLf Uβfγ+2Cf LmLrU2CfmLrδC (B.7)Realigning (B.7) and considering the kinematics rela-tionship, βf = βr + (L/U)γ, we obtain˙βf˙γ =2Cf LmULr02CfmLr−2CrmLfδC − βf−βr−10γ (B.8)
Important Links:
Abstract
DOI:
10.2316/Journal.205.2008.3.205-4497
From Journal
(205) International Journal of Modelling and Simulation - 2008
Go Back