Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
SENSOR NETWORK DESIGN FOR IMPROVING ESTIMATION QUALITY
Vincent Sircoulomb, Ghaleb Hoblos, Houcine Chafouk, and José Ragot
References
[1] B.D. Anderson & J.B. Moore, Optimal filtering (EnglewoodCliffs, NJ: Prentice Hall, USA, 1979).
[2] K.L. Shi, T.F. Chan, Y.K. Wang, & S.L. Ho, Speed estimationof an induction motor drive using an optimized extendedKalman filter, IEEE Transactions on Industrial Electronics,49 (1), Berlin, Germany, 2002, 124–133.
[3] V. Sircoulomb, G. Hoblos, & H. Chafouk, A fault tolerantKalman filter bank, International Journal of AMSE, Rouen,2005, 99–108.
[4] D. Simon & D.L. Simon, Kalman filtering with inequalityconstraints for turbofan health estimation, IEE Proceedings onControl Theory and Applications, 153 (3), 2006, 371–378.
[5] S. Rezaei & R. Sengupta, Kalman filter based integration ofDGPS and vehicle sensors for localization, IEEE Transactionson Control System Technology, 15 (6), 2007, 1080–1088.
[6] S.G. Kim, J.L. Crassidis, Y. Cheng, & A.M. Fosbury, Kalmanfiltering for relative spacecraft attitude and position estimation,Journal of Guidance, Control and Dynamics, 30 (1), 2007,133–143.
[7] C.S. Johns & J. Mandel, A two-stage ensemble Kalman filterfor smooth data assimilation, Environmental and EcologicalStatistics, 15 (1), 2007, 101–110.
[8] N. Gupta, Constrained Kalman filtering and predicting be-haviour in agent-based financial market models, Doctoral Dis-sertation, University of Oxford, UK, 2008.
[9] C.K. Chui & G. Chen, Kalman filtering with real-time appli-cations (Springer-Verlag, 2008).
[10] E. Mazzour & D. Hodouin, Une aide algorithmique `al’optimisation du placement des capteurs dans un proc´ed´e,Journal Europ´een des Syst`emes Automatis´es, 37 (10), 2003,1251–1276.
[11] G. Hoblos, M. Staroswiecki, & A. A¨ıtouche, Optimal designof fault tolerant sensor network, IEEE Conference on Controland Applications, Anchorage, Alaska, USA, 2000, 467–472.
[12] M. Staroswiecki, G. Hoblos, & A. A¨ıtouche, Sensor networkdesign for fault tolerant estimation, International Journal ofAdaptive Control and Signal Processing, 18 (1), 2004, 55–72.
[13] N.E. Wu, S. Thavamani, Y. Zhang, & M. Blanke, Sensor faultmasking of a ship propulsion system, Control Engineering andPractice, 14 (11), 2006, 1337–1345.
[14] T.L. Chen & R.Z. You, A novel fault-tolerant system for sensordrift compensation, Sensors and Actuators A, 147 (2), 2008,623–632.
[15] S. Li & G. Tao, Feedback based adaptive compensation ofcontrol system sensor uncertainties, Automatica, 45 (2), 2009,393–404.
[16] D. Maquin, M. Luong, & J. Ragot, Fault detection and isolationand sensor network design, Journal Europ´een des Syst`emesAutomatis´es, 31, 1997, 393–406.
[17] Y. Yan, Sensor placement and diagnosability analysis at de-sign stage, IMonet Workshop on Model-based Systems,16th European Conference on Artificial Intelligence, Valencia,Spain, 2004.
[18] A. Rosich, R. Sarrate, V. Puig, & T. Escobet, Efficient optimalsensor placement for model-based FDI using an incrementalalgorithm, IEEE Conference on Decision and Control, NewOrleans, LA, USA, 2007, 2590–2595.
[19] M. Bagajewicz, Design and upgrade of process plant instru-mentation (Lancaster, USA: Technomic Publishers, 2000).
[20] M. Staroswiecki, G. Hoblos, & A. A¨ıtouche, Fault toleranceanalysis of sensor systems, 38th IEEE Conference on Decisionand Control, Phoenix, Arizona, USA, 1999, 3581–3586.
[21] D.L. Aspach & H.W. Sorenson, Nonlinear Bayesian estimationusing Gaussian sum approximation, IEEE Transactions onAutomatic Control, 17 (4), 1972, 439–448.
[22] S.J. Julier, J.K. Uhlmann, & H.F. Durrant-White, A newmethod for nonlinear transformation of means and covariancesin filters and estimators, IEEE Transactions on AutomaticControl, 45 (3), 2000, 477–482.
[23] M. Nφrgaard, N.K. Poulsen, & O. Ravn, New developmentsin state estimation for nonlinear systems, Automatica, 36 (11),2000, 1627–1638.
[24] K. Ito & K. Xiong, Gaussian filters for nonlinear filteringproblems, IEEE Transactions on Automatic Control, 45 (5),2000, 910–927.
[25] G. Evensen, Data assimilation: The ensemble Kalman filter(Berlin, Germany: Springer-Verlag, 2006).
[26] A. Doucet, N. de Freitas, & N. Gordon, Sequential MonteCarlo methods in practice (New York, USA: Springer-Verlag,2001).
[27] R. Van der Merwe, Sigma-point Kalman filters for probabilisticinference in dynamic state-space models, Doctoral Dissertation,Faculty of the OGI School of Science & Engineering, Oregon,USA, 2004.
[28] V. Sircoulomb, G. Hoblos, H. Chafouk, & J. Ragot, Evaluationof estimation quality with respect to sensors losses, 7th QualitaWorld Congress, Tanger, Morocco, 2007.
[29] N.E. Wu, K. Zhou, & G. Salomon, On reconfigurability, IFACSafeprocess, Budapest, Hungary, 2000, 846–851.
[30] M. Staroswiecki, On reconfigurability with respect to sensorfailures, IFAC World Congress, Barcelona, Spain, 2002.
[31] V. Sircoulomb, G. Hoblos, H. Chafouk, & J. Ragot, Analyseet synth`ese de redondance de capteurs en vue d’am´eliorerl’estimation d’´etat d’un syst`eme, Colloque Interdisciplinaireen Instrumentation, Nancy, France, 2007, 141–148.
[32] V. Sircoulomb, Etude des concepts de filtrage robusteaux m´econnaissances de mod`ele et aux pertes de mesures.Application aux syst`emes de navigation, Doctoral Dissertation,Institut National Polytechnique de Lorraine, Nancy, France,2008.
[33] S. Orderud, Comparison of Kalman filter estimation approachesfor state space models with nonlinear measurements, Scandi-navian Conference on Simulation and Modeling, Trondheim,Norway, 2005.
[34] V. Sircoulomb, G. Hoblos, H. Chafouk, & J. Ragot, Analy-sis and comparison of nonlinear filtering methods, AdvancedControl and Diagnosis Workshop, Nancy, France, 2006.
[35] J. LaViola, A comparison of unscented and extended Kalmanfilter for estimating a quaternion motion, American ControlConference, Denver, Colorado, USA, 2003, 2435–2440.
Important Links:
Abstract
DOI:
10.2316/Journal.205.2010.4.205-5023
From Journal
(205) International Journal of Modelling and Simulation - 2010
Go Back