Yancho Todorov and Michail Petrov
[1] T. Senawong, Notes on advanced biochemical techniques (KhonKaen University, 2004). [2] P. Dofour, Control engineering in drying technology: reviewand trends, Drying Technology, 24, 2006, 889–904. [3] J. Qin & T. Bagwell, A survey of industrial model predictivecontrol technology, Control Engineering Practice, 11(7), 2003,733–764. [4] E. Camacho & C. Bordons, Model predictive control SecondEdition (Springer Verlag, 2004). [5] B. Rawlings, Tutorial overview of model predictive control,IEEE Control Systems Magazine, 20(3), 2000, 38–52. [6] F. Allg¨ower & R. Findeisen, An introduction to nonlinearmodel predictive control, Proc. of 21st Benelux Meeting onSystems and Control, 2003. [7] M. Gevers, A personal view of the development of systemidentification: a 30-year journey through exiting field, ControlSystems Magazine, 26(6), 2006, 93–105. [8] M. Pottman & R. Pearson, Block-oriented NARMAX modelswith output multiplicities, AIChE Journal, 44(1), 1998, 131–140. [9] J. Abonyi & R. Babuska, Identification and control of nonlin-ear systems using fuzzy Hammerstein models, Industrial andEngineering Chemistry Research, 39, 2000, 4302–4314. [10] J. C. Gomez & E. Baeyens, Hammerstein an Wiener modelidentification using rational orthonormal bases. Lat. Am. appl.Res., 33 (4), 2003, 449–456. ISSN 1851–8796. [11] R. Pearson, Nonlinear input/output modeling, Journal ofProcess Control, 5(4), 1995, 197–211. [12] P. Stoica, On the convergence of an iterative algorithm usedfor Hammerstein system identification, IEEE Transactions onAutomatic Control, 26, 1981, 967–969. [13] N. Bershad, J. Bouchired, & S. Castanie, Stochastic analysisof adaptive gradient identification of Wiener-Hammersteinsystems for Gaussian inputs, IEEE Transactions on SignalProcessing, 48(2), 2000, 557–560. [14] H. Emara-Shabaik, E. Ahmed, & M. Alajmi, Wiener-Hammerstein model identification-recursive algorithms, JSMEInternational Journal, 45(2), 2002, 606–613. [15] T. Falk, K. Peckelmans, J. Syukens, & B. De Moor, Identifi-cation of Wiener-Hammerstein systems using LS-SVMs, 15thIFAC Symposium on System Identification, 2009, 820–825. [16] J. Ke, C. Zhang, & Y. Qiao, Modified evolution strat-egy based identification of multi-input single-output Wiener-Hammerstein model, Third Int. Conf. on Natural Computation,4, 2007, 251–255. [17] D. Dasgupta & S. Patwardahan, NMPC of a continuousfermenter using Wiener-Hammerstein model developed fromirregularly sampled multi-rate data, Proc. 9th Int. Symp. onDynamics and Control of Process Systems, 2010, 623–628. [18] M. Terzyiska, Y. Todorov, & M. Petrov, NMPC with adaptivelearning rate scheduling of an internal fuzzy-neural model,Proc. Int. Conf. ‘ISAC 2006’, 1, 2006, 289–298. [19] M. Terzyiska, Y. Todorov, & M. Petrov, Adaptive supervisorytuning of nonlinear model predictive controller for a heat ex-changer. Proc. IFAC Workshop ESC’06 Energy Saving Controlin Plants and Buildings, 1, 2006, 93–98. [20] Y. Todorov & Ts Tsvetkov, Volterra model predictive controlof a lyophilization plant, Proc. Int. IEEE Conf. on “Intelligentsystems’08 , 3, 2008, 13–18.31 [21] S. Lee & G. Yen, Analysis of Takagi-Sugeno fuzzy modelsin system identification for model based control, Journal ofControl and Intelligent Systems, 32(2), 2004, 69–79. [22] M. Khadir & J. Ringwood, Application of generalized predictivecontrol to milk pasteurization process, Proc. Int. Conf. ofIntelligent Systems and Control, 31(1), 2003, 37–44. [23] M. Terzyiska, Y. Todorov, & M. Petrov, Nonlinear modelpredictive controller using a fuzzy – neural Hammerstein model,Proc. Int. Conf. ‘ISAC 2006’, 2006, 299–308. [24] M. Shoen, B. Braxton, L. Gatlin, & R. Jefferis, A simulationmodel for primary drying phase of the freeze-drying, Interna-tional Journal of Pharmaceutics, 114(2), 1995, 159–170. [25] M. Schoen & R. Jefferis, Simulation of a controlled freezedrying process, Proc. of IASTED International Conference,1993, 65–68.
Important Links:
Go Back