POSITION-SINGULARITY ANALYSIS OF 6-3 STEWART-GOUGH PARALLEL MANIPULATORS FOR SPECIAL ORIENTATIONS

Yi Cao, Weixi Ji, Hui Zhou, and Qiuju Zhang

References

  1. [1] V.E. Gough, Contribution to discussion to papers on researchin automobile stability and control and in tire performance,Proc. of the Automobile Division Institution of MechanicalEngineers, Montreal, Canada, 1957, 392–398.
  2. [2] D. Stewart, A platform with six degrees of freedom, Proc ofthe Institution of Mechanical Engineers Part C: Journal ofMechanical Engineering Science, 180 (5), 1965, 371–378.
  3. [3] K.H. Hunt, Structural kinematics of in-parallel-actuated-robot-arms, Journal of Mechanisms, Transmissions, and Automationin Design, 105(4), 1983, 705–712.
  4. [4] E.F. Fichter, A stewart platform-based manipulator: generaltheory and practical construction, The International Journalof Robotics Research, 5(2), 1986, 157–182.
  5. [5] J.-P. Merlet, Parallel manipulator part 2: singular configu-rations and grassmann geometry, Technical Report, INRIA,Sophia Antipolis, France, 1998, 66–70.
  6. [6] J.-P. Merlet, Singular configurations of parallel manipulatorsand grassmann geometry, The International Journal of RoboticsResearch, 8(5), 1989, 45–56.
  7. [7] D. Basu & A. Ghosal, Singularity analysis of platform-typemulti-loopspatialmechanism, Mechanism and Machine Theory,32(3), 1997, 375–389.
  8. [8] G.L. Long, Use of the cylindroid for the singularity analysis ofrank 3 robot manipulator, Mechanism and Machine Theory,32(3), 1997, 391–404.
  9. [9] C.M. Gosselin & J. Angeles, Singularity analysis of closed-loop kinematic chains, IEEE Transactions on Robotics andAutomation, 6(3), 1990, 181–190.
  10. [10] J. Sefrioui & C.M. Gosselin, ´Eude et repr´esentation des lieuxde singularit´e des manipulateurs parall`eles sph´eriques `a troisdegr´es de libert´e avec actionneurs prismatiques, MechanismMachine Theory, 29(3), 1994, 559–579.
  11. [11] J. Sefrioui & C.M. Gosselin, On the quadratic nature of thesingularity curves of planar three-degree-of-freedom parallelmanipulators, Mechanism and Machine Theory, 30(4), 1995,533–551.
  12. [12] J. Wang & C.M. Gosselin, Kinematic analysis and singularityrepresentation of spatial five-degree-of-freedom parallel mech-anisms, Journal of Robotics System, 14(12), 1997, 851–869.
  13. [13] B.M. St-Onge & C.M. Gosselin, Singularity analysis and rep-resentation of the general gough-stewart platform, The Inter-national Journal of Robotics Research, 19(3), 2000, 271–288.
  14. [14] Z. Huang, L.H. Chen, & Y.W. Li, The singularity principle andproperty of stewart parallel manipulator, Journal of RoboticsSystems, 20 (4), 2003, 163–176.
  15. [15] Z. Huang, Y. Cao, & Y.W. Li, Structure and property of thesingularity loci of the 3/6-stewart-gough platform for generalorientations, Robotica, 24 (7), 2006, 75–84.
  16. [16] Z. Huang & Y. Cao, Property identification of the singularityloci of a class of gough-stewart manipulators, The InternationalJournal of Robotics Research, 24(8), 2005, 675–685.
  17. [17] Y. Cao, Q.J. Zhang, H. Zhou, & B.K. Li, Property identificationof 6-3 stewart parallel manipulators for special orientations,ICIRA 2008 International Conference on Intelligent Roboticsand Applications, Wuhan, China, 2008, 36–45.
  18. [18] Y. Cao, H. Zhou, Q.J. Zhang, & W.X. Ji, The research onorientation-singularity and orientation-workspace of a class ofthe stewart-gough parallel manipulators, Proc. of the Institu-tion of Mechanical Engineers, Part K: Journal of Multi-bodyDynamics, 224 (K1), 2010, 19–32.
  19. [19] K.H. Hunt, Kinematic geometry of mechanisms (Oxford, UK:Oxford University Press, 1978).
  20. [20] R.S. Ball, Theory of screw (Cambridge, UK: Cambridge Uni-versity Press, 1900).

Important Links:

Go Back