Qiuling Zou and James Yang
[1] S. McGuan, Human Modeling – from bubblemen to skeletons, SAE Technical Paper 2001-01-2086, 2001. [2] H.J. Kim, E. Horn, J.S. Arora, and K. Abdel-Malek, An optimization-based methodology to predict digital human gait motion, 2005 Digital human modeling for design and engineering conference (Iowa City, IA, 2005). [3] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, Biped walking pattern generation by using preview control of zero-moment point, Proc. 2003 IEEE Int. Conf. on Robotics and Automation, Taipei, Taiwan, 2003, 1620–1626. [4] Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, and K. Tanie, Planning walking patterns for a biped robot, IEEE Transactions on Robotics and Automation, 17(3), 2001, 280–289. [5] M. Vukobratović, B. Borovac, D. Surla, and D. Stokic, Biped locomotion, dynamics, stability, control and application (Scientific Fundamentals of Robotics), (Berlin: Springer Verlag, 1990). [6] Y. Xiang, H.J. Chung, A. Mathai, S. Rahmatalla, J. Kim, T. Marler, S. Beck, J. Yang, J.S. Arora, and K. Abdel-Malek, 2007. Optimization-based dynamic human walking prediction, SAE Human Modeling for Design and Engineering Conference (Seattle, WA: Society of Automotive Engineers), Warrendale, PA, SAE paper number 2007-01-2489. [7] Y.J. Xiang, J.S. Arora, S. Rahmatalla, and K. Abdel-Malek, Optimization-based dynamic human walking prediction: One step formulation, International Journal of Numerical Methods Engineering, 79, 2009, 667–695. [8] R.R. Neptune, C.P. McGowan, and S.A. Kautz, Forward dynamics simulations provide insight into muscle mechanical work during human locomotion, Exercise and Sport Science Reviews, 37(4), 2009, 203–210. [9] F.C. Anderson and M.G. Pandy, Dynamic optimization of human walking, Journal of Biomechanical Engineering, 123(5), 2001, 381–390. [10] J. Yang, T. Marler, H. Kim, J. Arora, and K. Abdel-Malek, Multi-objective optimization for upper body posture prediction, 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (Albany, NY, 2004). [11] D. Tlalolini, Y. Aoustin, and C. Chevallereau, Design of a walking cyclic gait with single support phases and impacts for the loco-motor system of a thirteen-link 3D biped using the parametric optimization, Multibody System Dynamics, 23, 2010, 33–56. [12] Q. Wang, Y. Xiang, H. Kim, J. Arora, et al., Alternative Formulations for Optimization-based-Digital Human Motion Prediction, SAE Technical Paper 2005-01-2691, 2005. doi:10.4271/2005-01-2691. [13] P.H. Channon, S.H. Hopkins, and D.T. Pham, Derivation of optimal walking motions for a bipedal walking robot, Robotica, 10, 1992, 165–172. [14] D.G. Thelen and F.C. Anderson, Using computed muscle control to generate forward dynamic simulations of human walking from experimental data, Journal of Biomechanics, 39(6), 2006, 1107–1115. [15] J.H. Kim, Y.J. Xiang, R. Bhatt, J. Yang, H.J. Chung, J.S. Arora, and K. Abdel-Malek, Generating effective whole-body motions of a human-like mechanism with efficient ZMP formulation, International Journal of Robotics and Automation, 24(2), 2009, 125–136. [16] D. Katic and M. Vukobratović, Survey of intelligent control techniques for humanoid robots, Journal of Intelligent Robotic System, 37(2), 2003, 117–141. [17] T. Saidouni and G. Bessonnet, Generating globally optimized sagittal gait cycles of a biped robot, Rotobitca, 21, 2003, 199–210. [18] Y. Hurmuzlu and A. Ephanov, Generating pathological gait patterns via the use of robotic locomotion models, Journal of Technological Health Care, 10, 2002, 135–146. [19] S.J. Qin and T.A. Badgwell, A survey of industrial model predictive control technology, Control Engineering Practice, 11(7), 2003, 733–764. [20] M. Vukobratović and B. Borovac, Zero-moment point – thirty five years of its life, International Journal of Humanoid Robotics, 1(1), 2004, 157–173. [21] A. Goswami, Postural stability of biped robots and the foot-rotation indicator (FRI) point, International Journal of Robotics Research, 18(6), 1999, 523–533. [22] P. Sardain and G. Bessonnet, Forces acting on a biped robot: Center of pressure-zero moment point, IEEE Transactions on Systems, Man, and Cybernetics Part A, 34(5), 2004, 630–637. [23] M.B. Popovic, A. Goswami, and H. Herr, Ground reference points in legged locomotion: Definitions, biological trajectories and control implications, International Journal of Robotics research, 24(12), 2005, 1013–1032. [24] T. Takubo, K. Inoue, and T. Arai, Pushing an object considering the hand reflect forces by humanoid robot in dynamic walking, Proceedings of the IEEE International Conference on Robotics and Automation, 3, 2005, 1706–1711. [25] K. Harada, S. Jajita, K. Kaneko, and H. Hirukawa, Dynamics and balance of a humanoid robot during manipulation tasks, IEEE Transactions on Robotics, 22(3), 2006, 568–575. [26] J. Anquez, T. Boubekeur, L. Bibin, E. Angelini, and I. Bloch, Utero-fetal unit and pregnant woman modeling using a computer graphics approach for dosimetry studies, MICCAI ’09 Proc. 12th Int. Conf. on Medical Image Computing and Computer-Assisted Intervention – Part II, Loudon, UK, 2009, 1025–1032. [27] L. Bibin, J. Anquez, J. Alcalde, T. Boubekeur, and E. Angelini, Whole-body pregnant woman modeling by digital geometry processing with detailed uterofetal unit based on medical images, IEEE Transactions on Biomedical Engineering, 57(10), 2010, 2346–2358. [28] B. Howard, J. Yang, and J. Gragg, Toward a new digital pregnant woman model and posture prediction, 1st International Conference on Applied Digital Human Modeling (Miami, FL, 2010). [29] J. Kim, Y. Xiang, J. Yang, J. Arora, and K. Abdel-Malek, Dynamic motion planning of overarm throw for a biped human multibody system, Multibody System Dynamics, 24(1), 2010, 1–24. [30] M. Ackermann and A.J. van den Bogert, Optimality principles for model-based prediction of human gait. Journal of Biomechanics, 43(6), 2010, 1055–1060. [31] J.D. Rupp, K.D. Klinich, S. Moss, J. Zhou, M.D. Pearlman, and L.W. Schneider, Development and testing of a prototype pregnant abdomen for the small-female Hybrid III ATD, Stapp Car Crash Journal, 45, 2001, 61–78. [32] J.D.A.S.L.W. Klinich, B. Ebby, J.D. Rupp, and M.D. Pearlman, Seated anthropometry during pregnancy, University of Michigan Transportation Institute, Ann Arbor, MI, 1999. [33] B. Howard, A. Cloutier, and J. Yang, Physics-based seated posture prediction for pregnant women and validation considering ground and seat pan contacts, Transactions of ASME Journal of Biomechanical Engineering, 134(7), 2012, 071004-1–071004-10. [34] B. Howard and J. Yang, Calculating support reaction forces in physics-based seated posture prediction for pregnant women, International Journal of Robotics and Automation, 27(3), 2012, 308–321. [35] J. Gragg, J. Yang, and B. Howard, Hybrid method for driver accommodation using optimization-based digital human models, Computer Aided Design, 44(1), 2012, 29–39. [36] P.E. Gill, W. Murray, and M.A. Saunders, User’s guide for Snopt version 6, a Fortran package for large-scale nonlinear programming, 2001. [37] W.H. Gage, D.A. Winter, J.S. Frank, A.L. Adkin, Kinematic and kinetic validity of the inverted pendulum model in quiet standing, Gait Posture, 19(2), 2004, 124–132. [38] A.M. Bacsi and J.G. Colebatch, Evidence for reflex and perceptual vestibular contributions to postural control, Experimental Brain Research, 160(1), 2005, 22–28.
Important Links:
Go Back