MONTE CARLO SIMULATION OF POWER BALANCE CONTROL IN TRANSMISSION GRID

Vaclav Cerny and Petr Janecek

References

  1. [1] UCTE, Operational Handbook. (Brussels, Belgium, 2004).
  2. [2] M.B. Zammit, D.J. Hill, and R.J. Kaye, Designing ancillary services markets for power system security, IEEE Transactions on Power Systems, 15(2), 2000, 675–680.
  3. [3] G. Deqiang and E. Litvinov, Energy and reserve market designs with explicit consideration to lost opportunity costs, IEEE Transactions on Power Systems, 18(1), 2003, 53–59.
  4. [4] W. Tong, M. Rothleder, Z. Alaywan, and A.D. Papalexopoulos, Pricing energy and ancillary services in integrated market systems by an optimal power flow, IEEE Transactions on Power Systems, 19(1), 2004, 339–347.
  5. [5] G. Chicco and G. Gross, Competitive acquisition of prioritizable capacity-based ancillary services, IEEE Transactions on Power Systems, 19(1), 2004, 569–576.
  6. [6] L. Zuyi and M. Shahidehpour, Security-constrained unit commitment for simultaneous clearing of energy and ancillary services markets, IEEE Transactions on Power Systems, 20(2), 2005, 1079–1088.
  7. [7] P. Havel, P. Horacek, V. Cerny, and J. Fantik, Optimal planning of ancillary services for reliable power balance control, IEEE Transactions on Power Systems, 23(3), 2008, 1375–1382.
  8. [8] V. Cerny, E. Janecek, A. Fialova, and J. Fantik, Monte Carlo simulation of electricity transmission system operation, Proc. 17th IFAC World Congress, Seoul, Korea, July 6–11, 2008.
  9. [9] T.W. Anderson, The statistical analysis of time series (New York: John Wiley & Sons, 1971).
  10. [10] A. Papoulis and S.U. Pillai, Probability, random variables and stochastic processes (New York: McGraw-Hill, 2002).
  11. [11] E. Janecek, V. Cerny, A. Fialova, and J. Fantik, A new approach to modelling of electricity transmission system operation, Proc. IEEE PES Power Systems Conference and Exposition, Atlanta, USA, October 29–November 1, 2006.
  12. [12] V.R. Fatalov, Asymptotics of large deviation probabilities for Gaussian fields: applications, Izvestiya Natsionalnoi Akademii Nauk Armenii, Matematika, 28(5), 1993.
  13. [13] A. Gill, Introduction to the theory of finite-state machines (New York: McGraw-Hill, 1962).
  14. [14] C.M. Grinstead and J.L. Snell, Introduction to probability (Providence, Rhode Island: American Mathematical Society, 1997).
  15. [15] S. Asmussen and C.A. O’Cinneide, Matrix-exponential distributions – Distributions with a rational Laplace transform (New York: John Wiley & Sons, 1997).
  16. [16] H.W. Sorenson and D.L. Alspach, Recursive Bayesian estimation using Gaussian sums, Automatica, 7(4), 1971, 465–479.
  17. [17] D.L. Alspach and H.W. Sorenson, Nonlinear Bayesian estimation using Gaussian sum approximations, IEEE Transactions on Automatic Control, 17(4), 1972, 439–448.
  18. [18] G. Holton, Value-at-risk: Theory and practice (New York: Academic Press, 2003).
  19. [19] G.R. Chen and S.H. Hsu, Linear stochastic control systems (London: CRC Press, 1995).
  20. [20] L. Arnold, Random dynamical systems (Berlin: Springer-Verlag, 1998).
  21. [21] G. Box and G. Jenkins, Time series analysis: Forecasting and control (San Francisco: Holden-Day, 1970).
  22. [22] C.R. Rao, H. Toutenburg, A. Fieger, C. Heumann, T. Nittner, and S. Scheid, Linear models: Least squares and alternatives (Berlin: Springer-Verlag, 1999).
  23. [23] G. Birkhoff and G.C. Rota, Ordinary differential equations (New York: John Wiley & Sons, 1978).

Important Links:

Go Back