OPTIMAL ITERATIVE LEARNING CONTROL FOR GENERAL NONLINEAR SYSTEMS WITH UNCERTAIN PARAMETERS

Wang Hongbin, Cheng Xiaoyan, Li Yaoyao, and Wang Ce

References

  1. [1] S.S. Saab, A discrete-time stochastic iterative learning con-trol algorithm for a class of nonlinear Systems, Control andIntelligent Systems, 33(2), 2005, 95–101.
  2. [2] K.K. Liu and Y.C. Xie, The iterative learning control systemfor 600 MW unit milling system, Digital Manufacturing andAutomation (ICDMA), 2011 Second International Conf. on.IEEE, 2011, 1292–1295.
  3. [3] Y. Sun, G. Liu, C. Wang, and et al., Fuzzy iterative learn-ing control of ring permanent magnet torque motor, DigitalManufacturing and Automation (ICDMA), 2010 InternationalConf. on. IEEE, 1, 2010, 761–765.
  4. [4] Z. Hou, Y. Wang, C. Yin, and et al., Terminal iterative learningcontrol based station stop control of a train, InternationalJournal of Control, 84(7), 2011, 1263–1274.
  5. [5] Z. Xiong, J. Zhang, and J. Dong, Optimal iterative learningcontrol for batch processes based on linear time-varying per-turbation model, Chinese Journal of Chemical Engineering,16(2), 2008, 235–240.
  6. [6] J.X. Xu and R. Yan, On initial conditions in iterative learningcontrol, IEEE Transactions on Automatic Control, 50(9), 2005,1349–1354.
  7. [7] H.S. Lee and Z. Bien, Study on robustness of iterative learningcontrol with non-zero initial error, International Journal ofControl, 64(3), 1996, 345–359.
  8. [8] M.X. Sun and Q.Z. Yan, Design studies for error trackingof iterative learning control systems, Acta Automatica Sinica,38(12), 2012, 1–12.
  9. [9] Y. Miyasato, Adaptive control of nonholonomic systems basedon inverse optimality, SICE 2004 Annual Conf. IEEE, 1, 2004,493–498.
  10. [10] J. Wang, J. Wang, W. Liu, and et al., Output-feedbackrobust adaptive control for strict-feedback stochastic nonlinearsystems under inverse optimality costs, Control and DecisionConf. (CCDC), 2010 Chinese. IEEE, 2010, 3507–3512.
  11. [11] H. Kim, J. Back, H. Shim, and et al., Locally optimal andglobally inverse optimal controller for multi-input nonlinearsystems, American Control Conf., 2008. IEEE, 2008,4486–4491.
  12. [12] L. Rodrigues, An inverse optimality method to solve a class ofsecond order optimal control problems, Control & Automation(MED), 2010 18th Mediterranean Conf. on. IEEE, 2010,407–412.
  13. [13] M.A. Fallah and L. Rodrigues, Optimal control of a thirdorder nonlinear system based on an inverse optimality method,American Control Conf. (ACC), 2011. IEEE, 2011, 900–904.
  14. [14] X.S. Cai, Z.Z. Han, and X.D. Wang, Construction of controlLyapunov functions for a class of nonlinear systems. ActaAutomatica Sinica, 32(5), 2006, 796–799.
  15. [15] Y.M. Chen, Z.Z. Han, and X.S. Cai, Inverse optimal controlbased on the new characteristic of control Lyapunov function,Systems Engineering and Electronic, 26(12), 2004, 1845–1847.
  16. [16] E.D. Sontag, A composite energy characterization of asymp-totic controllability. SIAM Journal on Control and Optimiza-tion, 21(3), 1983, 462–471.
  17. [17] A. Fekih, Improved LQR-based control approach for highperformance induction motor drives, Control and IntelligentSystems, 37(1), 2009, 21–30.
  18. [18] N.M. Horri, P. Palmer, and M. Roberts, Inverse optimalsatellite attitude control from a geometric viewpoint, IASTEDConf. on Control Applications, 2009.
  19. [19] L. Wang, S. Mo, D. Zhou, and et al., Delay-range-dependentmethod for iterative learning fault-tolerant guaranteed costcontrol for batch processes, Industrial & Engineering ChemistryResearch, 52(7), 2013, 2661–2671.

Important Links:

Go Back