Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
ADAPTIVE VRFT BASED ON MFAC FOR THE SPEED CONTROL OF PMDC MOTOR
Rana J. Masood, Daobo Wang, and Muhammad F. Manzoor
References
[1] X. Jiang, H. Wenxin, et al. , Electric drive system of dual-winding fault-tolerant permanent-magnet motor for aerospaceapplications, IEEE Transactions on Industrial Electronics,62(12), 2015, 7322–7330. doi:10.1109/tie.2015.2454483.
[2] F. Mejdr and L. Beran, The implementation of CNC con-trol using smart device controller, 2015 IEEE Int. Work-shop of Electronics, Control, Measurement, Signals andTheir Application to Mechatronics (ECMSM), June 2015,doi:10.1109/ecmsm.2015.7208687.65
[3] A. NP and B. Kaliaperumal, Speed and torque control ofpermanent magnet synchronous motor using hybrid fuzzyproportional plus integral controller, Journal of Vibration andControl, 21(3), 2013, 563–579. doi:10.1177/1077546313488160.
[4] Z. Qiao, S. Tingna, et al., New sliding-mode observer forposition sensorless control of permanent-magnet synchronousmotor, IEEE Transactions on Industrial Electronics, 60(2),2013, 710–719. doi:10.1109/tie.2012.2206359.
[5] A. Rahimi, B. Farhad, et al., The online parameter identifica-tion of chaotic behaviour in permanent magnet synchronousmotor by self-adaptive learning bat-inspired algorithm, Inter-national Journal of Electrical Power & Energy Systems, 78,2016, 285–291. doi:10.1016/j.ijepes.2015.11.084.
[6] A.d.O. Guimar˜aes, J.P. da Silva, and E.R.M. Dantas, Geneticalgorithm applied to control of dc motor with disturbance re-jection by feedforward action, Control and Intelligent Systems,43, 2015. doi:10.2316/journal.201.2015.1.201-2599.
[7] A. Benmakhlouf, A. Louchene, and D. Djarah, Fuzzy logicand modified crisp logic applied to a DC motor posi-tion control, Control and Intelligent Systems, 38(3), 2010.doi:10.2316/journal.201.2010.3.201-2214.
[8] H. Halmarsson, M. Gevers, S. Gunnarsson, and O. Lequin, Iter-ative feedback tuning: Theory and applications, IEEE ControlSystems Magazine, 18(4), 1998, 26–41. doi:10.1109/37.710876.
[9] J. Sj¨oberg, D.B. Franky, et al., Iterative controller optimizationfor nonlinear systems, Control Engineering Practice, 11(9),2003, 1079–1086. doi:10.1016/s0967-0661(02)00231-9.
[10] A. Karimi, K. Van Heusden, and D. Bonvin, Non-iterativedata-driven controller tuning using the correlation approach,2007 European Control Conference (ECC), IEEE, 2007, Kos,Greece, 5189–5195.
[11] L. Miˇskovi´c, A. Karimi, and D. Bonvin, Correlation-based tun-ing of a restricted-complexity controller for an active suspen-sion system, European Journal of Control, 9(1), 2003, 77–83.doi:10.3166/ejc.9.77-83.
[12] L. dos Santos Coelho and A.A.R. Coelho, Model-free adap-tive control optimization using a chaotic particle swarm ap-proach, Chaos, Solitons & Fractals, 41(4), 2009, 2001–2009.doi:10.1016/j.chaos.2008.08.004.
[13] M.C. Campi, A. Lecchini, and S. M. Savaresi, Virtual referencefeedback tuning: A direct method for the design of feedbackcontrollers, Automatica, 38(8), 2002, 1337–1346. doi:10.1016/s0005-1098(02)00032-8.
[14] M.C. Campi and S.M. Savaresi, Direct nonlinear control de-sign: The virtual reference feedback tuning (VRFT) approach,IEEE Transactions on Automatic Control, 51(1), 2006, 14–27.doi:10.1109/tac.2005.861689.
[15] W. Ling, H. Ni, et al., Intelligent virtual reference feedbacktuning and its application to heat treatment electric furnacecontrol, Engineering Applications of Artificial Intelligence, 46,2015, 1–9. doi:10.1016/j.engappai.2015.08.008.
[16] W. Xiaofeng, X. Li, et al., Data-driven model-free adap-tive sliding mode control for the multi degree-of-freedomrobotic exoskeleton, Information Sciences, 327, 2016, 246–257.doi:10.1016/ j.ins.2015.08.025.
[17] L. dos Santos Coelho, M.W. Pessoa, R.R. Sumar, and A.A.R.Coelho, Model-free adaptive control design using evolutionary-neural compensator, Expert Systems with Applications, 37(1),2010), 499–508. doi:10.1016/j.eswa.2009.05.042.
[18] K.K. Tan, T.H. Lee, S.N. Huang, and F.M. Leu, Adaptive-predictive control of a class of SISO nonlinear systems, Dy-namics and Control, 11(2), 2001, 151–174. doi:10.1023/a:1012583811904.
[19] B. Zhang and W. Zhang, Adaptive predictive functional controlof a class of nonlinear systems, ISA Transactions, 45(2), 2006,175–183. doi:10.1016/s0019-0578(07)60188-8.
[20] Y. Jinpeng, P. Shi, et al., Neural network-based adaptivedynamic surface control for permanent magnet synchronousmotors, IEEE Transactions on Neural Networks and LearningSystems, 26(3), 2015, 640–645. doi:10.1109/tnnls.2014.2316289.
[21] J.-W. Jung, Q.L. Viet, et al., Adaptive PID speed controldesign for permanent magnet synchronous motor drives, IEEETransactions on Power Electronics, 30(2), 2015, 900–908.doi:10.1109/ tpel.2014.2311462.
[22] Z. Hou and W. Huang, The model-free learning adaptive controlof a class of SISO nonlinear systems, Proc. 1997 AmericanControl Conference (Cat. No.97CH36041), 1997. doi:10.1109/acc.1997.611815.
[23] Z. Liu, Fang L. Luo, and M.H. Ra Zuo, Nonlinear load-adaptive MIMO controller for DC motor field weakening,Electric Machines & Power Systems, 28(10), 2000, 929–943.doi:10.1080/07313560050129819.
Important Links:
Abstract
DOI:
10.2316/Journal.201.2017.2.201-2775
From Journal
(201) Mechatronic Systems and Control - 2017
Go Back