INVERSE MOTION METHOD FOR THE STABILIZATION OF UNDERACTUATED INERTIA WHEEL PENDULUM

Ancai Zhang, Jinhua She, Jianlong Qiu, Chaomin Luo, Chengdong Yang, and Fawaz E. Alsaadi

References

  1. [1] M.W. Spong, The swing up control problem for the Acrobot,IEEE Control Systems Magazine, 15(1), 1995, 49–55.
  2. [2] A. Khalaji and S. Moosavian, Switching control of a tractor-trailer wheeled robot. International Journal of Robotics andAutomation, 30(2), 2015, 1–9.
  3. [3] J. Smith, Galloping in an underactuated quadrupedal robot,International Journal of Robotics and Automation, 30(4), 2015,322–332.
  4. [4] C. Bechlioulis, G. Karras, S. Heshmati-Alamdari, and K. Kyriakopoulos, Trajectory tracking with prescribed performancefor underactuated underwater vehicles under model uncertain-ties and external disturbances, IEEE Transactions on ControlSystems Technology, 25(2), 2017, 429–440.
  5. [5] R. Naldi, M. Furci, R. Sanfelice, and L. Marconi, Robust globaltrajectory tracking for underactuated VTOL aerial vehiclesusing inner-outer loop control paradigms, IEEE Transactionson Automatic Control, 62(1), 2017, 97–112.
  6. [6] R. Carpenter, R. Hatton, and R. Balasubramanian, Compari-son of contact capabilities for underactuated parallel jaw grippers for use on industrial robots, Proc. of ASME Int. Conf.on Design Engineering Technical and Computers Information,New York, NY, USA, 2014, 1–9.
  7. [7] Z. Dong, L. Wan, Y. Li , L. Zhang, and G. Zhang, Blockbackstepping stabilization control of underactuated USV inpolar coordinate system, Journal of Traffic and TransportationEngineering, 15 (4), 2015, 61–68.
  8. [8] X. Xin, J. She, T. Yamasaki, and Y. Liu, Swing-up controlbased on virtual composite links for n-link underactuated robotwith passive first joint, Automatica, 45(9), 2009, 1986–1994.
  9. [9] N. Sun, Y. Fang, H. Chen, and B. Lu, Amplitude-saturatednonlinear output feedback antiswing control for underactuatedcranes with double-pendulum cargo dynamics, IEEE Transactions on Industrial Electronics, 64(3), 2017, 2135–2146.
  10. [10] A. Zhang, J. Qiu, C. Yang, and H. He, Stabilization ofunderactuated four-link gymnast robot using torque-coupledmethod, International Journal of Non-Linear Mechanics, 77,2015, 299–306.
  11. [11] H. Asl, G. Oriolo, and H. Bolandi, An adaptive schemefor image-based visual servoing of an underactuated UAV,International Journal of Robotics and Automation, 29(1), 2014,92–104.
  12. [12] X. Xin, S. Tanaka, J. She, and T. Yamasaki, New analyticalresults of energy-based swing-up control for the Pendubot,International Journal of Non-Linear Mechanics, 52, 2013,110–118.
  13. [13] X. Xin and M. Kaneda, Analysis of the energy-based swing-upcontrol of the Acrobot, International Journal of Robust andNonlinear Control, 17(16), 2007, 1503–1524.
  14. [14] A. Zhang, X. Lai, M. Wu, and J. She, Stabilization of under-actuated two-link gymnast robot by using trajectory trackingstrategy, Applied Mathematics and Computation, 253, 2015,193–204.
  15. [15] X. Lai, J. She, S. Yang, and M. Wu, Comprehensive unified control strategy for underactuated two-link manipulators,IEEE Transactions on Systems, Man, and Cybernetics, PartB: Cybernetics, 39(2), 2009, 389–398.
  16. [16] M. Spong, P. Corke, and R. Lozano, Nonlinear control of thereaction wheel pendulum, Automatica, 37(11), 2001, 1845–1851.
  17. [17] H.K. Khalil, Nonlinear systems, 3rd ed. (Englewood, NJ:Prentice Hall, 2002).
  18. [18] G. Oriolo and Y. Nakamura, Control of mechanical systemswith second-order nonholonomic constraints: underactuatedmanipulators, Proc. of the 30th IEEE Conf on Decision andControl, Brighton, UK, 1991, 2398–2403.
  19. [19] V. Hern´andez and H. Sira-Ram´ırez, Generalized PI control forswinging up and balancing the inertia wheel pendulum, Proc.of American Control Conf., Denver, 2003, 2809–2814.
  20. [20] V. Hern´andez and H. Sira-Ram´ırez, A combined sliding mode-generalized PI control scheme for swinging up and balancingthe inertia wheel pendulum, Asian Journal of Control, 5(4),2003, 620–625.
  21. [21] R. Ortega, M.W. Spong, F. G´omez-Estern, and G. Blanken-stein, Stabilization of a class of underactuated mechanicalsystems via interconnection and damping assignment, IEEETransactions on Automatic Control, 47(8), 2002, 1218–1232.
  22. [22] H. Ye, S. Peng, W. Gui, and C. Yang, Stabilization of theinertia wheel pendulum by time-delayed state feedback, Proc.of the 26th Chinese Control Conf., Zhangjiajie, China, 2007,23–27.
  23. [23] A. Zhang, C. Yang, S. Gong, and J. Qiu, Nonlinear stabilizingcontrol of underactuated inertia wheel pendulum based oncoordinate transformation and time-reverse strategy, NonlinearDynamics, 84(4), 2016, 2467–2476.
  24. [24] N. Qaiser, S. Tariq, N. Haq, and T. Aziz, Stabilization of aninertia wheel pendulum using an implicit controller design,WSEAS Transactions on Systems and Control, 7(5), 2010,591–600.
  25. [25] J. She, A. Zhang, X. Lai, and M. Wu, Global stabilizationof 2-DOF underactuated mechanical systems—an equivalent-input-disturbance approach, Nonlinear Dynamics, 69(1–2),2012, 495–509.
  26. [26] L. Praly, R. Ortega, and G. Kaliora, Stabilization of nonlinearsystems via forwarding mod{LgV }, IEEE Transactions onAutomatic Control, 46(9), 2001, 1461–1466.
  27. [27] N. Sun, Y. Fang, and H. Chen, A novel sliding mode controlmethod for an inertia wheel pendulum system, Proc. of Int.Workshop on Recent Advances in Sliding Modes (RASM),Istanbul, Turkey, 2015, 1–6.
  28. [28] N. Qaiser and N. Iqbal, Exponential stabilization of the inertiawheel pendulum using surface control, Journal of Circuits,Systems, and Computers, 16(1), 2007, 81–92.
  29. [29] C. Xia. Modem control theory, 2nd ed. (Beijing: Science Press,2016) (in Chinese).
  30. [30] J. Zhang, X. Xin, and H. Xu, Output feedback control of aclass of linear time-varying systems, Acta Automatica Sinica,40(2), 2014, 373–378 (in Chinese).
  31. [31] Y. Fu and J. Lin, Nonlinear backstepping control design of thefuruta pendulum, Proc of the 2005 IEEE Conf. on ControlApplications, Toronto, Canada, 2005, 96–101.
  32. [32] N. Muˇskinja and B. Tovornik, Swinging up and stabilizationof a real inverted pendulum, IEEE Transactions on IndustrialElectronics, 53(2) 2006, 631–639.
  33. [33] X. Lai, J. She, S.X. Yang, and M. Wu, Control of Acrobotbased on non-smooth Lyapunov function and comprehensivestability analysis, IET Control Theory and Applications, 2(3),2008, 181–191.

Important Links:

Go Back