A REVIEW ON HUMAN–EXOSKELETON COORDINATION TOWARDS LOWER LIMB ROBOTIC EXOSKELETON SYSTEMS

Yue Ma, Xinyu Wu, Jingang Yi, Can Wang, and Chunjie Chen

References

  1. [1] A. Zoss, H. Kazerooni, and A. Chu, Biomechanical de-sign of theBerkeley lower extremity exoskeleton (BLEEX),IEEE/ASME Transactions on Mechatronics, 11(2), 2006,128–138.
  2. [2] K. Amundson, J. Raade, N. Harding, and H. Kazerooni,Hybrid hydraulic-electric power unit for field and servicerobots, Proc. IEEE/RSJ Conf. on Intelligent Robots andSystems, Edmonton, Alta., Canada, 2005, 3453–3458.
  3. [3] R. Steger, S. Kim, and H. Kazerooni, Control scheme andnetworked control architecture for the Berkeley lower extrem-ity exoskeleton (BLEEX), Proc. IEEE Conf. on Robotics andAutomation, Orlando, FL, USA, 2006, 3469–3476.
  4. [4] H. Kazerooni, N. Harding, and R. Angold, Low extremityexoskeleton, Int. Patent WO 2006/078 871A2, 2006.
  5. [5] H. Kazerooni, N. Harding, R. Angold, K. Amundson, J. W.Burns, and A. Zoss, Wearable material handling system, Int.Patent WO 2010/101 595A1, 2010.
  6. [6] [Online]. Available: http://www.rb3d.com/en/exo/ (accessedon Sep. 2015).
  7. [7] S. Yoshiyuki, HAL: Hybrid assistive limb based on cybernics,Robotics research (Berlin, Heidelberg: Springer, 2010), 25–34.
  8. [8] Y. Tingfang, C. Marco, O.C. Maria, and V. Nicola, Reviewof assistive strategies in powered lower-limb orthoses andexoskeletons, Robotics and Autonomous Systems, 64,2015,120–136.
  9. [9] N. Domen and R. Robert, A survey of sensor fusion methodsin wearable robotics, Robotics and Autonomous Systems, 73,2015, 155–170.
  10. [10] M. Wei, L. Quan, Z. Zude, A. Qingsong, S. Bo, and X.S. Shane,Recent development of mechanisms and control strategies forrobot-assisted lower limb rehabilitation, Mechatronics, 31,2015, 132–145.
  11. [11] M.R. Tucker, O. Jeremy, P. Anna, B. Hannes, B. Mohamed,L. Olivier, D.R.M. Jos´e, R. Robert, V. Heike, and G. Roger,Control strategies for active lower extremity prosthetics andorthotics: a review, Journal of Neuroengineering and Reha-bilitation, 12(1), 2015, 1.
  12. [12] V.A. Joshua and X.S. Quan, Towards compliant and wearablerobotic orthoses: A review of current and emerging actuatortechnologies, Medical Engineering & Physics, 4, 2016, 317–325.
  13. [13] W. Michael, G. Martin, C. Oliver, R. Stephan, and B. Philipp,Active lower limb prosthetics: a systematic review of designissues and solutions, Biomedical Engineering Online, 15(3),2016, 140.
  14. [14] S.K. Banala, S.H. Kim, S.K. Agrawal, and J.P. Scholz, Robotassisted gait training with active leg exoskeleton (ALEX),IEEE Transactions on Neural Systems and RehabilitationEngineering, 17(1), 2009, 2–8.
  15. [15] S.K. Banala, S.K. Agrawal, S.H. Kim, and J.P. Scholz,Novel gait adaptation and neuromotor training results usingan active leg exoskeleton, IEEE/ASME Transactions onMechatronics, 15(2), 2010, 216-225.
  16. [16] X. Jin, X. Cui, and S.K. Agrawal, Design of a cable-drivenactive leg exoskeleton (C-ALEX) and gait training experi-ments with human subjects, Proc. IEEE Conf. on Roboticsand Automation, Seattle, WA, USA, 2015, 5578–5583.
  17. [17] G.S. Heo, S.-R. Lee, M.K. Kwak, C.W. Park, G. Kim,and C.-Y. Lee, Motion control of bicycle-riding exoskeletonrobot with interactive force analysis, International Journal ofPrecision Engineering and Manufacturing, 16(7), 1631–1637.
  18. [18] P. Beyl, M. Van Damme, P. Cherelle, and D. Lefeber, Safeand compliant guidance in robot-assisted gait rehabilitationusing proxy-based sliding mode control, Proc. IEEE Conf.on Rehabilitation Robotics, Kyoto, Japan, 2009, 321–326.
  19. [19] P. Beyl, K. Knaepen, S. Duerinck, M. Van Damme,B. Vanderborght, R. Meeusen, and D. Lefeber, Safe andcompliant guidance by a powered knee exoskeleton for robot-assisted rehabilitation of gait, Advanced Robotics, 25(5),2011, 513–535.
  20. [20] K. Knaepen, P. Beyl, S. Duerinck, F. Hagman, D. Lefeber,and R. Meeusen, Human–robot interaction: kinematics andmuscle activity inside a powered compliant knee exoskeleton,IEEE Transactions on Neural Systems and RehabilitationEngineering, 22(6), 2014, 1128–1137.
  21. [21] A.I.A. Ahmed, H. Cheng, X. Lin, Z.M.E. Elhassan, andM. Omer, On-line walking speed control in human-poweredexoskeleton systems, Int. Conf. on Communication, Control,Computing and Electronics Engineering, Khartoum, Sudan,2017, 1–7.
  22. [22] A.I.A. Ahmed, C. Hong, L. Zhang, M. Omer, and X. Lin,On-line walking speed control in human-powered exoskeletonsystems based on dual reaction force sensors, Journal ofIntelligent and Robotic Systems, 87(1), 2017, 59–80.
  23. [23] J. Hu, Z.-G. Hou, Y. Chen, L. Peng, and L. Peng,Task-oriented active training based on adaptive impedancecontrol with iLeg-a horizontal exoskeleton for lower limb re-habilitation, Proc. IEEE Conf. on Robotics and Biomimetics,Shenzhen, China, 2013, 2025–2030.
  24. [24] R. Lopez, H. Aguilar-Sierra, S. Salazar, J. Torres, andR. Lozano, Adaptive control for passive kinesiotherapy ELL-TIO, Proc. IEEE Conf. on Advanced Robotics, Montevideo,Uruguay, 2013, 1–6.
  25. [25] B. Ugurlu, H. Oshima, and T. Narikiyo, Lower bodyexoskeleton-supported compliant bipedal walking for para-plegics: how to reduce upper body effort?, Proc. IEEE Conf.on Robotics and Automation, Hong Kong, China, 2014,1354–1360.
  26. [26] P.K. Jamwal, S. Hussain, M.H. Ghayesh, and S.V.Rogozina, Impedance control of an intrinsically compliantparallel ankle rehabilitation robot, IEEE Transactions onIndustrial Electronics, 63(6), 2016, 3638–3647.
  27. [27] P.K. Jamwal, S. Hussain, M.H. Ghayesh, and S.V.Rogozina, Adaptive impedance control of parallel ankle reha-bilitation robot, Journal of Dynamic Systems Measurementand Control-Transactions of the ASME, 139(11), 2017, 1608.
  28. [28] H. Rifai, M.S. Ben Abdessalem, A. Chemori, S. Mohammed,and Y. Amirat, Augmented L1 adaptive control of an actuatedknee joint exoskeleton: from design to real-time experiments,Proc. IEEE Conf. on Robotics and Automation, Stockholm,Sweden, 2016, 5708–5714.
  29. [29] H. Rifai, S. Mohammed, K. Djouani, and Y. Amirat,Toward lower limbs functional rehabilitation through a knee-joint exoskeleton, IEEE Transactions on Control SystemsTechnology, 25(2), 2017, 712–719.
  30. [30] W.M. dos Santos, G.A.P. Caurin, and A.A.G. Siqueira,Design and control of an active knee orthosis driven by arotary series elastic actuator, Control Engineering Practice,58, 2017, 307–318.
  31. [31] X. Li, Y. Pan, G. Chen, and H. Yu, Multi-modal controlscheme for rehabilitation robotic exoskeletons, InternationalJournal of Robotics Research, 36(5–7), 2017, 759–777.
  32. [32] G. Colombo, M. Joerg, R. Schreier, and V. Dietz, Treadmilltraining of paraplegic patients using a robotic orthosis, Jour-nal of Rehabilitation Research and Development, 37(6), 2000,693–700.
  33. [33] B. Chen, X. Zhao, H. Ma, L. Qin, and W.-H. Liao, Designand characterization of a magneto-rheological series elasticactuator for a lower extremity exoskeleton, Smart Materialsand Structures, 26(10), 2017, 105008.
  34. [34] Y. Long, Z.-J. Du, W. Wang, and W. Dong, Development ofa wearable exoskeleton rehabilitation system based on hybridcontrol mode, International Journal of Advanced RoboticSystems, 13, 2016, 1729881416664847.
  35. [35] W.Y.-W. Tung, M. McKinley, M.V. Pillai, J. Reid, andH. Kazerooni, Design of a minimally actuated medical ex-oskeleton with mechanical swing-phase gait generation andsit-stand assistance, ASME Conf. on Dynamic Systems andControl, Palo Alto, California, USA, 2013, 4–13.
  36. [36] W. Banchadit, A. Temram, T. Sukwan, P. Owatchaiyapong,and J. Suthakorn, Design and implementation of a newmotorized-mechanical exoskeleton based on CGA patternizedcontrol, Proc. IEEE Conf. on Robotics and Biomimetics,Guangzhou, China, 2012, 1668–1673.
  37. [37] D.A. Winter, Anthropometry, in Biomechanics and MotorControl of Human Movement, Chapter 4, 2009, 51–74.
  38. [38] S. Tanabe, S. Hirano, and E. Saitoh, Wearable Power-AssistLocomotor (WPAL) for supporting upright walking in personswith paraplegia, Neurorehabilitation, 33(1), 2013, 99–106.
  39. [39] K.H. Low, X. Liu, and H. Yu, Development of NTU wearableexoskeleton system for assistive technologies, Proc. IEEEConf. on Mechatronics and Automation, Niagara Falls, Ont.,Canada, 2005, 1099–1106.
  40. [40] K.H. Low, X. Liu, C.H. Goh, and H. Yu, Locomotive controlof a wearable lower exoskeleton for walking enhancement,Journal of Vibration and Control, 12(12), 2006, 1311–1336.
  41. [41] W. Kim, S. Lee, M. Kang, J. Han, and C. Han, Energy-efficientgait pattern generation of the powered robotic exoskeletonusing DME, Proc. IEEE/RSJ Conf. on Intelligent Robotsand Systems, Taipei, Taiwan, 2010, 2475–2480.
  42. [42] S. Lee, W. Kim, M. Kang, J. Han, and C. Han, Optimalgait pattern generation for powered robotic exoskeleton andverification of its feasibility, Proc. Int. Symposium in Robotand Human Interactive Communication, Viareggio, Italy,2010, 500–505.
  43. [43] D. Sanz-Merodio, M. Cestari, J. Carlos Arevalo, andE. Garcia, A lower-limb exoskeleton for gait assistancein quadriplegia, Proc. IEEE/RSJ Conf. on Robotics andBiomimetics, Guangzhou, China, 2012, 122–127.
  44. [44] D. Sanz-Merodio, M. Cestari, J.C. Arevalo, X.A. Carrillo,and E. Garcia, Generation and control of adaptive gaitsin lower-limb exoskeletons for motion assistance, AdvancedRobotics, 28(5), 2014, 329–338.
  45. [45] D. Sanz-Merodio, J. Sancho, M. Perez, and E. Garcia, Controlarchitecture of the ATLAS 2020 lower limb active orthosis,Advances in Cooperative Robotics, 2017, 860–868.
  46. [46] N. Trung, T. Komeda, T. Miyoshi, and L. Ota, The poweredgait training system using feedback from own walking infor-mation, Issnip Conf. on Biosignals and Biorobotics, Rio deJanerio, Brazil, 2013, 239–243.
  47. [47] Y. Hasegawa and K. Nakayama, Finger-mounted walk con-troller of powered exoskeleton for paraplegic patient’s walk,World Automation Congress, Waikoloa, HI, USA, 2014, 400–405.
  48. [48] M. Li, Z. Yuan, X. Wang, and Y. Hasegawa, Electric stimu-lation and cooperative control for paraplegic patient wearingan exoskeleton, Robotics and Autonomous Systems, 98, 2017,204–212.
  49. [49] T. Kagawa, H. Ishikawa, T. Kato, C. Sung, and Y. Uno,Optimization-based motion planning in joint space for walk-ing assistance with wearable robot, IEEE Transactions onRobotics, 31(2), 2015, 415–424.
  50. [50] R. Griffin, T. Cobb, T. Craig, M. Daniel, N. van Dijk,J. Gines, K. Kramer, S. Shah, O. Siebinga, J. Smith, andP. Neuhaus, Stepping forward with exoskeletons team IHMC’sdesign and approach in the 2016 Cybathlon, IEEE Roboticsand Automation Magazine, 24(4), 2017, 66–74.
  51. [51] K. Kamali, A.A. Akbari, and A. Akbarzadeh, Trajectorygeneration and control of a knee exoskeleton based on dynamicmovement primitives for sit-to-stand assistance, AdvancedRobotics, 30(13), 2016, 846–860.
  52. [52] D.J. Reinkensmeyer, D. Aoyagi, J.L. Emken, J.A. Galvez,W. Ichinose, G. Kerdanyan, S. Maneekobkunwong, K. Mi-nakata, J.A. Nessler, R. Weber, R.R. Roy, R. de Leon, J.E.Bobrow, S.J. Harkema, and V.R. Edgerton, Tools for un-derstanding and optimizing robotic gait training, Journal ofRehabilitation Research and Development, 43(5), 657–670.
  53. [53] H.K. Kwa, J.H. Noorden, M. Missel, T. Craig, J.E. Pratt,and P.D. Neuhaus, Development of the IHMC mobility assistexoskeleton, Proc. IEEE Conf. on Robotics and Automation,Kobe, Japan, 2009, 1349–1355.
  54. [54] P.D. Neuhaus, J.H. Noorden, T.J. Craig, T. Torres,J. Kirschbaum, and J.E. Pratt, Design and evaluation ofMina: a robotic orthosis for paraplegics, Proc. IEEE Conf.on Rehabilitation Robotics, Zurich, Switzerland, 2011, 1–8.
  55. [55] U. Lugris, J. Carlin, A. Luaces, and J. Cuadrado, Con-sideration of assistive devices in the gait analysis of spinalcord-injured subjects, ASME Conf. on Multibody Systems,Nonlinear Dynamics, and Control, Portland, Oregon, USA,2014, 9–18.
  56. [56] Y. Yang, C. Yang, K.-M. Lee, and H. Yu, Model-based fuzzyadaptation for control of a lower extremity rehabilitation ex-oskeleton, Proc. IEEE/ASME Conf. on Advanced IntelligentMechatronics, Singapore, 2009, 350.
  57. [57] J.-F. Zhang, Y.-M. Dong, C.-J. Yang, Y. Geng, Y. Chen,and Y. Yang, 5-Link model based gait trajectory adaptioncontrol strategies of the gait rehabilitation exoskeleton forpost-stroke patients, Mechatronics, 20(3), 2010, 368–376.
  58. [58] A. Duschau-Wicke, J. Von Zitzewitz, L. Luenenburger, andR. Riener, Patient-driven cooperative gait training with therehabilitation robot lokomat, Proc. Int. Fed. European Conf.on Medical and Biological Engineering, ETH Zurich, Zurich,Switzerland, 2009, 1616–1619.
  59. [59] M. Talaty, A. Esquenazi, and J.E. Briceno, Differentiatingability in users of the ReWalk(TM) powered exoskeleton:an analysis of walking kinematics, Proc. IEEE Conf. onRehabilitation Robotics, Seattle, WA, USA, 2013, 1–5.
  60. [60] K.A. Strausser, T.A. Swift, A.B. Zoss, and H. Kazerooni,Prototype medical exoskeleton for paraplegic mobility: firstexperimental results, Proc. ASME Conf. on Dynamic Systemsand Control Conference, Cambridge, Massachusetts, USA,2010, 453–458.
  61. [61] H.A. Quintero, R.J. Farris, and M. Goldfarb, Control andimplementation of a powered lower limb orthosis to aid walkingin paraplegic individuals, Proc. IEEE Conf. on RehabilitationRobotics, Zurich, Switzerland, 2011, 1–6.
  62. [62] K.A. Strausser and H. Kazerooni, The development andtesting of a human machine interface for a mobile medicalexoskeleton, Proc. IEEE/RSJ Conf. on Intelligent Robotsand Systems, San Francisco, CA, USA, 2011, 4911–4916.
  63. [63] D. Sanz-Merodio, M. Cestari, J. Carlos Arevalo, andE. Garcia, Control motion approach of a lower limb orthosisto reduce energy consumption, International Journal ofAdvanced Robotic Systems, 9(6), 2012, 232.
  64. [64] A.J. del-Ama, A. Gil-Agudo, J.L. Pons, and J.C. Moreno,Hybrid FES-robot cooperative control of ambulatory gaitrehabilitation exoskeleton, Journal of Neuroengineering andRehabilitation, 11(4), 2014, 27.
  65. [65] J. Poonsiri, M. Rachagorngij, and W. Charoensuk, Biome-chanical based design of an active knee ankle foot orthosis toaugment the knee motions, Proc. Int. Conf. on BiomedicalEngineering, Fukuoka, 2014, 1–5.
  66. [66] F. Chen, Y. Yu, Y. Ge, J. Sun, and B. Wu, A PAWLfor enhancing strength and endurance during walking usinginteraction force and dynamical information, Porc. IEEEConf. on Robotics and Biomimetics, Kunming, China, 2006,654–659.
  67. [67] K. Kong and D. Jeon, Design and control of an exoskeletonfor the elderly and patients, IEEE/ASEM Transactions onMechatronics, 11(4), 2006, 428–432.
  68. [68] B. Weinberg, J. Nikitczuk, S. Patel, B. Patritti, C. Mavroidis,P. Bonato, and P. Canavan, Design, control and humantesting of an active knee rehabilitation orthotic device, Proc.IEEE Conf. on Robotics and Automation, Roma, Italy, 2007,4126–4133.
  69. [69] Q. Wu, X. Wang, F. Du, and X. Zhang, Design and control of apowered hip exoskeleton for walking assistance, InternationalJournal of Advanced Robotic Systems, 12, 2015, 18.
  70. [70] C. Zhang, X. Zang, Z. Leng, H. Yu, J. Zhao, and Y. Zhu,Human–machine force interaction design and control forthe HIT load-carrying exoskeleton, Advances in MechanicalEngineering, 8(4), 2016, 1687814016645068.
  71. [71] K. Fujishiro, T. Ariumi, O. Oyama, and T. Yoshimitu,Development of pneumatic assist system for human walk,SICE Annual Conf. Program and Abstracts, 2003, 41.
  72. [72] J. Chen and W.-H. Liao, A leg exoskeleton utilizing a mag-netorheological actuator, Proc. IEEE Conf. on Robotics andBiomimetics, Kunming, China, 2006, 824–829.
  73. [73] K.H. Low and Y. Yin, Providing assistance to knee in thedesign of a portable active orthotic device, Proc. IEEE Conf.on Automation Science and Engineering, Shanghai, China,2016, 188.
  74. [74] C.J. Walsh, D. Paluska, K. Pasch, W. Grand, A. Valiente,and H. Herr, Development of a lightweight, underactuatedexoskeleton for load-carrying augmentation, Proc. IEEE Conf.on Robotics and Automation, Orlando, FL, USA, 2006, 3485.
  75. [75] C.J. Walsh, K. Pasch, and H. Herr, An autonomous, under-actuated exoskeleton for load-carrying augmentation, Proc.IEEE Conf. on Intelligent Robots and Systems, Beijing,China, 2006, 1410–1415.
  76. [76] C.J. Walsh, K. Endo, and H. Herr, A quasi-passive legexoskeleton for load-carrying augmentation, InternationalJournal of Humanoid Robotics, 4(3), 2007, 487–506.
  77. [77] A.M. Oymagil, J.K. Hitt, T. Sugar, and J. Fleeger, Control of aregenerative braking powered ankle foot orthosis, Proc. IEEEConf. on Rehabilitation Robotics, Noordwijk, Netherlands,2007, 28.
  78. [78] M. Sugisaka, J. Wang, H. Tsumura, and M. Kataoka, A controlmethod of ankle foot orthosis (AFO) with artificial muscle,SICE Annual Conf., Tokyo, Japan, 2008, 2013–2017.
  79. [79] J.S. Sulzer, R.A. Roiz, M.A. Peshkin, and J.L. Patton,A highly backdrivable, lightweight knee actuator for investi-gating gait in stroke, IEEE Transactions on Robotics, 25(3),2009, 539–548.
  80. [80] J. Kim, S. Hwang, R. Sohn, Y. Lee, and Y. Kim, Developmentof an active ankle foot orthosis to prevent foot drop and toedrag in hemiplegic patients: A preliminary study, AppliedBionics and Biomechanics, 8(3-4), 2011, 377–384.
  81. [81] E.A. Morris, K.A. Shorter, Y. Li, E.T. Hsiao-Wecksler,G.F. Kogler, T. Bretl, and W.K. Durfee, Actuation tim-ing strategies for a portable powered ankle foot orthosis,Proc. ASME Conf. on Dynamic Systems and Control andBath/ASME Symposium on Fluid Power and Motion Control,Arlington, Virginia, USA, 2011, 807–814.
  82. [82] D. Sasaki, T. Noritsugu, M. Takaiwa, and I.R.S.O. Japan,Development of pneumatic lower limb power assist wearwithout exoskeleton, Proc. IEEE/RSJ Conf. on IntelligentRobots and Systems, Vilamoura, Portugal, 2012, 1239–1244.
  83. [83] D. Sasaki, T. Noritsugu, and M. Takaiwa, Development ofpneumatic lower limb power assist wear driven with wearableair supply system, Proc. IEEE/RSJ Conf. on IntelligentRobots and Systems, Tokyo, Japan, 2013, 4440–4445.
  84. [84] K. Shamaei, P.C. Napolitano, and A.M. Dollar, A quasi-passive compliant stance control knee–ankle–foot orthosis,Proc. IEEE Conf. on Rehabilitation Robotics, Seattle, WA,USA, 2013, 1–6.
  85. [85] B. Shen, J. Li, F. Bai, and C.-M. Chew, Development andcontrol of a lower extremity assistive device (LEAD) for gaitrehabilitation, Proc. IEEE Conf. on Rehabilitation Robotics,Seattle, WA, USA, 2013, 1–6.
  86. [86] B. Shen, J. Li, and C.-M. Chew, Functional task basedassistance during walking for a lower extremity assistivedevice, Proc. IEEE Conf. on Robotics and Automation, HongKong, China, 2014, 246–251.
  87. [87] M. Wehner, B. Quinlivan, P.M. Aubin, E. Martinez-Villalpando, M. Baumann, L. Stirling, K. Holt, R. Wood,and C. Walsh, A lightweight soft exosuit for gait assistance,Proc. IEEE Conf. on Robotics and Automation, Karlsruhe,Germany, 2013, 3362–3369.
  88. [88] L.M. Mooney, E.J. Rouse, and H.M. Herr, Autonomousexoskeleton reduces metabolic cost of walking, Proc. IEEEConf. on Engineering in Medicine and Biology Society,Chicago, IL, USA, 2014, 3065–3068.
  89. [89] T. Kanno, D. Morisaki, R. Miyazaki, G. Endo, andK. Kawashima, A walking assistive device with intentiondetection using back-driven pneumatic artificial muscles,Proc. IEEE/RAS/EMBS Conf. on Rehabilitation Robotics,Singapore, Singapore, 2015, 565–570.
  90. [90] H. Kim, C. Seo, Y.J. Shin, J. Kim, and Y.S. Kang, Locomotioncontrol strategy of hydraulic lower extremity exoskeletonrobot, Proc. IEEE/ASME Conf. on Advanced IntelligentMechatronics, Busan, South Korea, 2015, 577–582.
  91. [91] H. Kim, Y.J. Shin, and J. Kim, Design and locomotioncontrol of a hydraulic lower extremity exoskeleton for mobilityaugmentation, Mechatronics, 46, 2017, 32–45.
  92. [92] D. Lim, W. Kim, H. Lee, H. Kim, K. Shin, T. Park, J. Lee,and C. Han, Development of a lower extremity exoskeletonrobot with a quasi-anthropomorphic design approach for loadcarriage, Proc. IEEE/RSJ Conf. on Intelligent Robots andSystems, Hamburg, Germany, 2015, 5345–5350.
  93. [93] D.M. Ka, H. Cheng, T.H. Toan, and Q. Jing, Minimiz-ing human–exoskeleton interaction force using compensationfor dynamic uncertainty error with adaptive RBF network,Journal of Intelligent and Robotic Systems, 82(3–4), 2016,413–433.
  94. [94] K.D. Mien, C. Hong, T.T. Huu, and J. Qiu, Minimizinghuman–exoskeleton interaction force by using global fast slid-ing mode control, International Journal of Control Automa-tion and Systems, 14(4), 2016, 1064–1072.
  95. [95] Z. Zhou, Y. Liao, C. Wang, and Q. Wang, Preliminaryevaluation of gait assistance during treadmill walking witha light-weight bionic knee exoskeleton, Proc. IEEE Conf. onRobotics and Biomimetics, Qingdao, China, 2016, 1173–1178.
  96. [96] D.J. Hyun, H. Lim, S. Park, and K. Jung, Development ofankle-less active lower-limb exoskeleton controlled using finiteleg function state machine, International Journal of PrecisionEngineering and Manufacturing, 18(6), 2017, 803–811.
  97. [97] Z.F. Lerner, D.L. Damiano, H.-S. Park, A.J. Gravunder, andT.C. Bulea, A robotic exoskeleton for treatment of crouch gaitin children with cerebral palsy: design and initial application,IEEE Transactions on Neural Systems and RehabilitationEngineering, 25(6), 2017, 650–659.
  98. [98] S. Thapa, H. Zheng, G.F. Kogler, and X. Shen, A roboticknee orthosis for sit-to-stand assistance, Proc. ASME Conf.Dynamic Systems and Control, Minneapolis, Minnesota, USA,2017, V001T07A004.
  99. [99] L. Gui, Z. Yang, X. Yang, W. Gu, and Y. Zhang, Design andcontrol technique research of exoskeleton suit, Proc. IEEEConf. on Automation and Logistics, Jinan, China, 2007,541–546.
  100. [100] H. Cao, Z. Ling, J. Zhu, Y. Wang, and W. Wang, Designframe of a leg exoskeleton for load-carrying augmentation,Proc. IEEE Conf. on Robotics and Biomimetics, Guilin,China, 2009, 426–431.
  101. [101] Y. Ding, I. Galiana, A. Asbeck, B. Quinlivan, S.M.M. DeRossi, and C. Walsh, Multi-joint actuation platform for lowerextremity soft exosuits, Proc. IEEE Conf. on Robotics andAutomation, Hong Kong, China, 2014, 1327–1334.
  102. [102] A.T. Asbeck, S.M.M. De Rossi, K.G. Holt, and C.J. Walsh,A biologically inspired soft exosuit for walking assistance,International Journal of Robotics Research, 34(6), 2015, 744–762.
  103. [103] A.T. Asbeck, K. Schmidt, and C.J. Walsh, Soft exosuit forhip assistance, Robotics and Autonomous Systems, 73, 2015,102–110.
  104. [104] Y. Ding, I. Galiana, C. Siviy, F.A. Panizzolo, and C. Walsh,IMU-based iterative control for hip extension assistance witha soft exosuit, Proc. IEEE Conf. on Robotics and Automation,Stockholm, Sweden, 2016, 3501–3508.
  105. [105] Y. Ding, F.A. Panizzolo, C. Siviy, P. Malcolm, I. Galiana,K.G. Holt, and C.J. Walsh, Effect of timing of hip extensionassistance during loaded walking with a soft exosuit, Journalof Neuroengineering and Rehabilitation, 13, 2016, 87.
  106. [106] J. Deng, P. Wang, M. Li, W. Guo, F. Zha, and X. Wang,Structure design of active power-assist lower limb exoskeletonAPAL robot, Advances in Mechanical Engineering, 9(11),2017, 1687814017735791.
  107. [107] K. Schmidt, J.E. Duarte, M. Grimmer, A. Sancho-Puchades,H. Wei, C.S. Easthope, and R. Riener, The myosuit: bi-articular anti-gravity exosuit that reduces hip extensor ac-tivity in sitting transfers, Frontiers in Neurorobotics, 11,2017, 57.
  108. [108] G. Aguirre-Ollinger, J.E. Colgate, M.A. Peshkin, andA. Goswami, A 1-DOF assistive exoskeleton with virtualnegative damping: Effects on the kinematic response of thelower limbs, Proc. IEEE/RSJ Conf. on Intelligent Robotsand Systems, San Diego, CA, USA, 2007, 1938–1944.
  109. [109] G. Aguirre-Ollinger, J.E. Colgate, M.A. Peshkin, andA. Goswami, Design of an active one-degree-of-freedom lower-limb exoskeleton with inertia compensation, InternationalJournal of Robotics Research, 30(4), 2011, 486–499.
  110. [110] G. Aguirre-Ollinger, J.E. Colgate, M.A. Peshkin, andA. Goswami, Inertia compensation control of a one-degree-of-freedom exoskeleton for lower-limb assistance: initialexperiments, IEEE Transactions on Neural Systems andRehabilitation Engineering, 20(1), 2012, 68–77.
  111. [111] U. Nagarajan, G. Aguirre-Ollinger, and A. Goswami, Inte-gral admittance shaping for exoskeleton control, Proc. IEEEConf. on Robotics and Automation, Seattle, WA, USA, 2015,5641–5648.
  112. [112] G. Aguirre-Ollinger, U. Nagarajan, and A. Goswami, Anadmittance shaping controller for exoskeleton assistance of thelower extremities, Autonomous Robots, 40(4), 2016, 701–728.
  113. [113] U. Nagarajan, G. Aguirre-Ollinger, and A. Goswami, Integraladmittance shaping: A unified framework for active exoskele-ton control, Robotics and Autonomous Systems, 75, 2016,310–324.
  114. [114] I. Kardan and A. Akbarzadeh, Assistive control of a compli-antly actuated single axis stage, Int. Conf. on Robotics andMechatronics, Tehran, Iran, 2016, 313–318.
  115. [115] I. Kardan and A. Akbarzadeh, Output feedback assistivecontrol of single-DOF SEA powered exoskeletons, IndustrialRobot-an International Journal, 44(3), 2017, 275–287.
  116. [116] W. Huo, S. Mohammed, Y. Amirat, and K. Kong, Activeimpedance control of a lower limb exoskeleton to assistsit-to-stand movement, Proc. IEEE Conf. on Robotics andAutomation, Stockholm, Sweden, 2016, 3530–3536.
  117. [117] H.-T. Tran, H. Cheng, M.-K. Duong, and H. Zheng, Fuzzy-based impedance regulation for control of the coupled human–exoskeleton system, Proc. IEEE Conf. on Robotics andBiomimetics, Bali, Indonesia, 2014, 986–992.
  118. [118] J.C. Perez-Ibarra, A.A.G. Siqueira, and H.I. Krebs, Assist-as-needed ankle rehabilitation based on adaptive impedancecontrol, Proc. IEEE/RAS/EMBS Conf. on RehabilitationRobotics, Singapore, Singapore, 2015, 723–728.
  119. [119] Q. Liu, A. Liu, W. Meng, Q. Ai, and S.Q. Xie, Hierarchi-cal compliance control of a soft ankle rehabilitation robotactuated by pneumatic muscles, Frontiers in Neurorobotics,11(4), 2017, 64.
  120. [120] D. Martelli, F. Vannetti, M. Cortese, P. Tropea, F. Giovac-chini, S. Micera, V. Monaco, and N. Vitiello, The effects onbiomechanics of walking and balance recovery in a novel pelvisexoskeleton during zero-torque control, Robotica, 32(8), 2014,1317–1330.
  121. [121] U. Haider, I.I. Nyoman, J.L. Coronado, C. Kim, and G.S.Virk, User-centric harmonized control for single joint assis-tive exoskeletons, International Journal of Advanced RoboticSystems, 13, 2016, 115.
  122. [122] M.J. Claros, R. Soto, J.L. Gordillo, J.L. Pons, and J.L.Contreras-Vidal, Robotic assistance of human motion usingactive-backdrivability on a geared electromagnetic motor,International Journal of Advanced Robotic Systems, 13, 2016,40.
  123. [123] L. Saccares, I. Sarakoglou, and N.G. Tsagarakis, iT-Knee:an exoskeleton with ideal torque transmission interface forergonomic power augmentation, Proc. IEEE/RSJ Conf. onIntelligent Robots and Systems, Daejeon, South Korea, 2016,780–786.
  124. [124] T. Bacek, M. Moltedo, K. Langlois, G.A. Prieto, M.C.Sanchez-Villamanan, J. Gonzalez-Vargas, B. Vanderborght,D. Lefeber, and J.C. Moreno, BioMot exoskeleton – Towards asmart wearable robot for symbiotic human–robot interaction,Proc. IEEE Conf. on Rehabilitation Robotics, London, UK,2017, 1666–1671.
  125. [125] S. Kim and J. Bae, Force-mode control of rotary series elasticactuators in a lower extremity exoskeleton using model-inverse time delay control, IEEE/ASME Transactions onMechatronics, 22(3), 2017, 1392–1400.
  126. [126] L. Huang, J.R. Steger, and H. Kazerooni, Hybrid controlof the Berkeley lower extremity exoskeleton (BLEEX), TheInternational Journal of Robotics Research, 25(5–6), 2005,561–573.
  127. [127] H. Kazerooni, Exoskeletons for human power augmentation,Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems,Edmonton, Alberta, Canada, 2005, 3459–3464.
  128. [128] H. Kazerooni, J.L. Racine, L.H. Huang, and R. Steger, Onthe control of the Berkeley Lower Extremity Exoskeleton(BLEEX), Proc. IEEE Conf. on Robotics and Automation,Barcelona, Spain, 2005, 4353–4360.
  129. [129] R. Huang, H. Cheng, Q. Chen, T. Huu-Toan, and X. Lin,Interactive learning for sensitivity factors of a human-poweredaugmentation lower exoskeleton, Proc. IEEE/RSJ Conf. onIntelligent Robots and Systems, Hamburg, Germany, 2015,6409–6415.
  130. [130] H. van der Kooij, B. Koopman, and E.H.F. van Assel-donk, Body weight support by virtual model control of animpedance controlled exoskeleton (LOPES) for gait training,Proc. IEEE Conf. on Engineering in Medicine and BiologySociety, Vancouver, BC, Canada, 2008, 1969–1972.
  131. [131] O. Unluhisarcikli, M. Pietrusinski, B. Weinberg, P. Bonato,and C. Mavroidis, Design and control of a robotic lowerextremity exoskeleton for gait rehabilitation, Proc. IEEE/RSJConf. on Intelligent Robots and Systems, San Francisco, CA,USA, 2011, 4893–4898.
  132. [132] K.N. Winfree, P. Stegall, and S.K. Agrawal, Design of aminimally constraining, passively supported gait trainingexoskeleton: ALEX II, Proc. IEEE Conf. on RehabilitationRobotics, Zurich, Switzerland, 2011, 5975499.
  133. [133] D. Zanotto, T. Lenzi, P. Stegall, and S.K. Agrawal, Improv-ing transparency of powered exoskeletons using force/torquesensors on the supporting cuffs, Proc. IEEE Conf. on Reha-bilitation Robotics, Seattle, WA, USA, 2013, 1–6.
  134. [134] T. Lenzi, D. Zanotto, P. Stegall, M.C. Carrozza, and S.K.Agrawal, Reducing muscle effort in walking through poweredexoskeletons, Proc. IEEE Conf. on Engineering in Medicineand Biology Society, San Diego, CA, USA, 2012, 3926–3929.
  135. [135] G. Aguirre-Ollinger, Learning muscle activation patterns vianonlinear oscillators: application to lower-limb assistance,Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems,Tokyo, Japan, 2013, 1182–1189.
  136. [136] D. Zanotto, P. Stegall, and S.K. Agrawal, Adaptive assist-as-needed controller to improve gait symmetry in robot-assistedgait training, Proc. IEEE Conf. on Robotics and Automation,Hong Kong, China, 2014, 724–729.
  137. [137] T. Petric, A. Gams, T. Debevec, L. Zlajpah, and J. Babic,Control approaches for robotic knee exoskeleton and theireffects on human motion, Advanced Robotics, 27(13), 2013,993–1002.
  138. [138] W. van-Dijk, H. van-der-Kooij, B. Koopman, and E.H.F. vanAsseldonk, Improving the transparency of a rehabilitationrobot by exploiting the cyclic behaviour of walking, Proc.IEEE Conf. on Rehabilitation Robotics, Seattle, WA, USA,2013, 1–8.
  139. [139] J. Kerestes, T.G. Sugar, and M. Holgate, Adding and sub-tracting energy to body motion – Phase oscillator, Proc.ASME Conf. Design Engineering Technical and Computersand Information in Engineering, Buffalo, New York, USA,2014, V05AT08A004.
  140. [140] K. Seo, J. Lee, Y. Lee, T. Ha, and Y. Shim, Fully autonomouship exoskeleton saves metabolic cost of walking, Proc. IEEEConf. on Robotics and Automation, Stockholm, Sweden, 2016,4628–4635.
  141. [141] J. Olivier, A. Ortlieb, M. Bouri, and H. Bleuler, Influence ofan assistive hip orthosis on gait, in Advances in IntelligentSystems and Computing, vol. 540 (Cham: Springer, 2017),531–540.
  142. [142] T.G. Sugar, E. Fernandez, D. Kinney, K.W. Hollander, andS. Redkar, HeSA, hip exoskeleton for superior assistance, inWearable Robotics: Challenges and Trends, Biosystems andBiorobotics, vol. 16 (Cham: Springer, 2017), 319–323.
  143. [143] W. van-Dijk, C. Meijneke, and H. van-der-Kooij, Evaluationof the achilles ankle exoskeleton, IEEE Transactions onNeural Systems and Rehabilitation Engineering, 25(2), 2017,151–160.
  144. [144] V.R. Garate, A. Parri, T. Yan, M. Munih, R.M. Lova,N. Vitiello, and R. Ronsse, Experimental validation of motorprimitive-based control for leg exoskeletons during continuousmulti-locomotion tasks, Frontiers in Neurorobotics, 11, 2017,1–17.
  145. [145] A. Parri, T. Yan, F. Giovacchini, M. Cortese, M. Muscolo,M. Fantozzi, R.M. Lova, and N. Vitiello, A portable ac-tive pelvis orthosis for ambulatory movement assistance, inWearable Robotics: Challenges and Trends, Biosystems andBiorobotics, vol. 16 (Cham: Springer, 2017), 75–80.
  146. [146] K. Kasaoka and Y. Sankai, Predictive control estimating op-erator’s intention for stepping-up motion by exo-skeleton typepower assist system HAL, Proc. IEEE/RSJ Conf. IntelligentRobots and Systems, 2001, 1578–1583.
  147. [147] J.L. Contreras-Vidal and R.G. Grossman, NeuroRex: aclinical neural interface roadmap for EEG-based brain ma-chine interfaces to a lower body robotic exoskeleton, Proc.IEEE Conf. on Engineering in Medicine and Biology, 2013,1579–1582.
  148. [148] K. Lee, D. Liu, L. Perroud, R. Chavarriaga, and J.D.R. Millan,Endogenous control of powered lower-limb exoskeleton, inWearable Robotics: Challenges and Trends, Biosystems andBiorobotics, vol. 16 (Cham: Springer, 2017), 115–119.
  149. [149] K. Gui, H. Liu, and D. Zhang, Toward multimodal human–robot interaction to enhance active participation of users ingait rehabilitation, IEEE Transactions on Neural Systemsand Rehabilitation Engineering, 25(11), 2017, 2054–2066.
  150. [150] W. Meng, B. Ding, Z. Zhou, Q. Liu, and Q. Ai, AnEMG-based force prediction and control approach for robot-assisted lower limb rehabilitation, Proc. IEEE Conf. on Sys-tems, Man and Cybernetics, San Diego, CA, USA, 2014,2198–2203.
  151. [151] W. Meng, Y. Zhu, Z. Zhou, K. Chen, and Q. Ai, Ac-tive interaction control of a rehabilitation robot basedon motion recognition and adaptive impedance control,Proc. IEEE Conf. on Fuzzy Systems, Beijing, China, 2014,1436–1441.
  152. [152] Y. Fan, Z. Guo, and Y. Yin, sEMG-based neuro-fuzzy con-troller for a parallel ankle exoskeleton with proprioception,International Journal of Robotics and Automation, 26(4),2011, 450–460.
  153. [153] S.-H. Lee, S.-N. Yu, H.-D. Lee, S.-J. Hong, C.-S. Han, andJ.-S. Han, Proposal for a modular-type knee-assistive wearableunit and verification of its feasibility, Int. Symposium onAutomation and Robotics in Construction, 2008, 187–194.
  154. [154] H. Kawamoto and Y. Sankai, Power assist system HAL-3 forgait disorder person, in Lecture Notes in Computer Sciencevol. 2398 (Berlin, Heidelberg: Springer, 2002), 196–203.
  155. [155] T. Kawabata, H. Satoh, and Y. Sankai, Working posturecontrol of robot suit HAL for reducing structural stress, Proc.IEEE Conf. on Robotics and Biomimetics, Guilin, China,2009, 2013–2018.
  156. [156] C. Fleischer, A. Wege, K. Kondak, and G. Hommel,Application of EMG signals for controlling exoskeletonrobots, Biomedizinische Technik, 51(5–6), 2006, 314–319.
  157. [157] H. He and K. Kiguchi, A study on EMG-based control ofexoskeleton robots for human lower-limb motion assist, Int.Special Topic Conf. on Information Technology Applicationsin Biomedicine, Tokyo, Japan, 2007, 292–295.
  158. [158] K. Kiguchi and Y. Imada, EMG-based control for lower-limb power-assist exoskeletons, IEEE Workshop on RoboticIntelligence in Informationally Structured Space, Nashville,TN, USA, 2009, 19–24.
  159. [159] Y. Hayashi and K. Kiguchi, A lower-limb power-assist robotwith perception-assist, Proc. IEEE Conf. on RehabilitationRobotics, Zurich, Switzerland, 2011, 5975445.
  160. [160] Y. Hayashi and K. Kiguchi, Stairs-ascending/descending as-sist for a lower-limb power-assist robot considering ZMP,Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems,San Francisco, CA, USA, 2011, 1755–1760.
  161. [161] K. Kiguchi, A. Komori, and T. Kouno, A study on motionmodification force in perception-assist for a lower-limb power-assist exoskeleton, Proc. Int. Symposium on Soft Computingand Intelligent Systems, Kitakyushu, Japan, 2014, 1233–1237.
  162. [162] K. Kiguchi and Y. Yokomine, Perception-assist with a lower-limb power-assist robot for sitting motion, Proc. IEEE Conf.on Systems Man and Cybernetics, Kowloon, China, 2015,2390–2394.
  163. [163] Y. Chen, J. Hu, W. Wang, L. Peng, L. Peng, and Z.-G. Hou,An FES-assisted training strategy combined with impedancecontrol for a lower limb rehabilitation robot, Proc. IEEEConf. on Robotics and Biomimetics, 2013, 2037–2042.
  164. [164] Y. Fan and Y. Yin, Active and progressive exoskeletonrehabilitation using multisource information fusion from EMGand force-position EPP, IEEE Transactions on BiomedicalEngineering, 60(12), 2013, 3314–3321.
  165. [165] L. Grazi, S. Crea, A. Parri, T. Yan, M. Cortese,F. Giovacchini, M. Cempini, G. Pasquini, S. Micera, andN. Vitiello, Gastrocnemius myoelectric control of a robotic hipexoskeleton, Proc. IEEE Conf. on Engineering in Medicineand Biology Society, Milan, Italy, 2015, 3881–3884.
  166. [166] J.R. Koller, D.A. Jacobs, D.P. Ferris, and C.D. Remy, Learning to walk with an adaptive gain proportional myoelectriccontroller for a robotic ankle exoskeleton, Journal of Neuro-engineering and Rehabilitation, 12, 2015, 97.
  167. [167] A. Shabani and M.J. Mahjoob, Bio-signal interface for kneerehabilitation robot utilizing EMG signals of thigh muscles,Proc. Int. Conf. on Robotics and Mechatronics, Tehran, Iran,2016, 228–233.
  168. [168] C. Mavroidis, J. Nikitczuk, B. Weinberg, R. Arango, G. Dana-her, K. Jensen, M. Leahey, R. Pavone, P. Pelletier, A. Provo,J. Prugnarola, R. Stuart, and D. Yasevac, Smart portablerehabilitation devices, Journal of NeuroEngineering and Re-habilitation, 2(1), 2005, 18.
  169. [169] H. Kawamoto, S. Taal, H. Niniss, T. Hayashi, K. Kamibayashi,K. Eguchi, and Y. Sankai, Voluntary motion support control ofrobot suit HAL triggered by bioelectrical signal for hemiplegia,Proc. IEEE Conf. on Engineering in Medicine and BiologySociety, Buenos Aires, Argentina, 2010, 462–466.
  170. [170] H.-Y. Huang, J.-S. Chen, and C.-E. Huang, Toward the gaitanalysis and control of a powered lower limb orthosis inascending and descending stairs, Procedia Engineering, 79,2014, 417–426.
  171. [171] N. Karavas, A. Ajoudani, N. Tsagarakis, J. Saglia, A. Bicchi,and D. Caldwell, Tele-impedance based assistive control fora compliant knee exoskeleton, Robotics and AutonomousSystems, 73, 2015, 78–90.

Important Links:

Go Back