REPETITIVE CONTROL OF ROBOTIC MANIPULATORS IN OPERATIONAL SPACE: A NEURAL NETWORK-BASED APPROACH, 302-309.

Necati Cobanoglu,∗ B. Melih Yilmaz,∗∗ Enver Tatlicioglu,∗∗ and Erkan Zergeroglu∗∗∗

References

  1. [1] S. Arimoto, S. Kawamura, and F. Miyazaki, Realization ofrobot motion based on a learning method, IEEE Transactionon Systems, Man, Cybernetics, 18(1), 1988, 126–134.
  2. [2] W. Messner, R. Horowitz, W. Kao, and M. Boals, A new adap-tive learning rule, IEEE Transactions on Automatic Control,36, 1991, 188–197.
  3. [3] R. Horowitz, Learning control of robot manipulators, ASMEJournal of Dynamic Systems, Measurement, and Control, 115,1993, 402–411.
  4. [4] W.E. Dixon, E. Zergeroglu, D.M. Dawson, and B.T. Costic,Repetitive learning control: A Lyapunov–based approach,IEEE Transaction on Systems, Man, and Cybernetics, 32(4),2002, 538–545.
  5. [5] A. Tayebi, Adaptive iterative learning control of robot manip-ulators, Automatica, 40, 2004, 1195–1203.
  6. [6] S. Liuzzo and P. Tomei, A global adaptive learning control ofrobot manipulators, Automatica, 44, 2008, 1378–1384.307
  7. [7] D. Heinzinger, B. Fenwick, B. Paden, and F. Miyazaki, Robustlearning control, Proc. IEEE Int. Conf. on Decision andControl, Tampa, FL, USA, 1989, 436–440.
  8. [8] C.M. Verrelli, Repetitive learning control design and perioduncertainties, Asian Journal of Control, 17(6), 2015, 2417–2426.
  9. [9] C.M. Verrelli, A larger family of nonlinear systems for therepetitive learning control, Automatica, 71, 2016, 38–43.
  10. [10] M. Sekimoto, S. Arimoto, S. Umesao, T. Torii, andH. Hahiguchi, Iterative learning control in task-space for robotswith redundant joints, Journal of Robotic Systems, 25(6),2007, 921–929.
  11. [11] S. Arimoto, M. Sekimoto, and S. Kawamura, Task-spaceiterative learning for redundant robotic systems: Existence ofa task-space control and convergence of learning, SICE Journalof Control, Measurement, and System Integration, 1(4), 2008,312–319.
  12. [12] K. Dogan, E. Tatlicioglu, E. Zergeroglu, and K. Cetin, Learningcontrol of robot manipulators in task space, Asian Journal ofControl, 20(3), 2018, 1003–1013.
  13. [13] F.L. Lewis, D.M. Dawson, and C.T. Abdallah, Robot Manipu-lator Control: Theory and Practice (Marcel Dekker, Inc., NewYork, NY, USA, 2004).
  14. [14] D.M. Dawson, M.M. Bridges, and Z. Qu, Nonlinear Controlof Robotic Systems for Environmental Waste and Restoration(Prentice-Hall, Englewood Cliffs, NJ, 1995).
  15. [15] M. Madhu, S.P. Kumar, S. Shriram, and R. Vignesh, ACCD-based inverse kinematics approach using Frenet–Serretparameterization for SHR manipulators, International Journalof Robotics and Automation, 2021, accepted (to appear).
  16. [16] A. Rezaeipanah, Z. Jamshidi, and S. Jafari, A shooting strategywhen moving on humanoid robots using inverse kinematics andqlearning, International Journal of Robotics and Automation,2021, accepted (to appear).
  17. [17] Y. Zhao, F. Yuan, C. Chen, L. Jin, J. Li, X. Zhang, andX. Lu, Inverse kinematics and trajectory planning for a hyper-redundant bionic trunk-like robot, International Journal ofRobotics and Automation, 35(3), 2020.
  18. [18] Q. Yu, G. Wang, T. Ren, L. Wu, and K. Chen, An efficient algo-rithm for inverse kinematics of robots with non–spherical wrist,International Journal of Robotics and Automation, 33(1),2018.
  19. [19] D. Zhang, Q. Zou, S. Guo, and H. Qu, Kinematics and perfor-mances analysis of a novel hybrid welding robot, InternationalJournal of Robotics and Automation, 35(4), 2020.
  20. [20] J. Chen and H.Y.K. Lau, Policy gradient-based inverse kine-matics refinement for tendon-driven serpentine surgical ma-nipulator, International Journal of Robotics and Automation,34(3), 2019.
  21. [21] G. Kanagaraj, S.A.R.S. Masthan, and V.F. Yu, Inverse kine-matic solution of obstacle avoidance redundant robot manipu-lator by bat algorithms, International Journal of Robotics andAutomation, 36(1), 2021.
  22. [22] E. Tatlicioglu, M.L. McIntyre, D.M. Dawson, and I.D. Walker,Adaptive non-linear tracking control of kinematically redun-dant robot manipulators, International Journal of Roboticsand Automation, 23(2), 2008, 98–105.
  23. [23] F. Lewis, S. Jagannathan, and A. Yesildirek, Neural NetworkControl of Robot Manipulators and Nonlinear Systems (Taylor& Francis, London, UK, 1999).
  24. [24] Y. Kim and F. Lewis, High-Level Feedback Control with NeuralNetworks (World Scientific, Singapore, 1998).
  25. [25] K. Hornik, M. Stinchcombe, and H. White, Multilayer feedfor-ward networks are universal approximators, Neural Networks,2(5), 1989, 359–366.
  26. [26] F.L. Lewis, Nonlinear network structures for feedback control,Asian Journal of Control, 1(4), 1999, 205–228.
  27. [27] I. Tanyer, E. Tatlicioglu, and E. Zergeroglu, Neural networkbased robust control of an aircraft, International Journal ofRobotics and Automation, 35(1), 2020, 13–22.
  28. [28] T. Mai, Y. Wang, and T. Ngo, Adaptive tracking controlfor robot manipulators using fuzzy wavelet neural networks,International Journal of Robotics and Automation, 30(1),2015.
  29. [29] W. Sun and Y. Wang, A robust robotic tracking controllerbased on neural network, International Journal of Roboticsand Automation, 20(3), 2005.
  30. [30] L. Jia, Y. Wang, J. He, L. Liu, Z. Li, and Y. Shen, Robustadaptive control based on machine learning and NTSMC forworkpiece surface–grinding robot, International Journal ofRobotics and Automation, 35(6), 2020.
  31. [31] D. Braganza, W. Dixon, D. Dawson, and B. Xian, Trackingcontrol for robot manipulators with kinematic and dynamicuncertainty, International Journal of Robotics and Automation,23(2), 2008.
  32. [32] E. Kreyszig, Advanced Engineering Mathematics (Wiley, NewYork, NY, USA, 2011).
  33. [33] M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinearand Adaptive Control Design (John Wiley & Sons, New York,NY, USA, 1995).
  34. [34] O.N. Sahin, E. Uzunoglu, E. Tatlicioglu, and M.I.C. Dede,Design and development of an educational desktop robot R3D,Computer Applications in Engineering Education, 25, 2017,222–229.
  35. [35] C. Wei, H. Gu, S. Sun, and Y. Zhao, Hybrid motion controlof cable-driven hyper redundant robot considering kinematicand tension optimization, International Journal of Roboticsand Automation, 34(5), 2019.

Important Links:

Go Back