IMPROVED COMPRESSED SENSING RECONSTRUCTION FOR FLUORESCENCE MOLECULAR TOMOGRAPHY OF SPARSE VIEW, 1-6.

Zhaolu Zuo, Shaobin Dou, and Deyi Kong

References

  1. [1] S. Florian, R. Jorge, and R. Markus, Fluorescence molecu-lar tomography: principles and potential for pharmaceuticalresearch, Pharmaceutics, 3(2), 2011, 229–274.
  2. [2] A. Farina, et al., Multiple-view diffuse optical tomographysystem based on time-domain compressive measurements, OpticLetters, 42(14), 2017, 2822–2825.
  3. [3] M. Toms, et al., Spectral domain optical coherence tomography:An in vivo imaging protocol for assessing retinal morphologyin adult Zebrafish, Zebrafish 14(2), 2017, 118–125.
  4. [4] T. Correia, et al., Accelerated optical projection tomographyapplied to in vivo imaging of Zebrafish, Plos One, 10(8), 2015,e0136213.
  5. [5] A.K. Trull, et al., Comparison of image reconstruction tech-niques for optical projection tomography, Applied Optics,57(8), 2018, 1874–1882.
  6. [6] J.R. Walls, et al., Correction of artefacts in optical projectiontomography, Physics in Medicine & Biology, 50(19), 2005,4645–4665.
  7. [7] J.R. Walls, et al., Resolution improvement in emission opticalprojection tomography, Physics in Medicine & Biology, 52(10),2007, 2775–2790.
  8. [8] E.J. Cands, et al., Robust uncertainty principles: exact signalreconstruction from highly incomplete frequency information,IEEE Transactions on Information Theory, 52(2), 2006, 489–509.
  9. [9] D.L. Donoho, Compressed sensing, IEEE Transactions onInformation Theory, 52(4), 2006, 1289–1306.
  10. [10] E.J. Candes and M.B. Wakin, An introduction to compressivesampling, IEEE Signal Processing Magazine, 25(2), 2008,21–30.
  11. [11] Q. Pi, R. Yao, et al., Wide-field fluorescence molecular to-mography with compressive sensing based preconditioning,Biomedical Optics Express, 6(12), 2015, 4887–4898.
  12. [12] W. Zou and X. Pan, Compressed-sensing-based fluorescencemolecular tomographic image reconstruction with groupedsources, BioMedical Engineering on Line, 13(1), 2014, 1–15.
  13. [13] J.F.P.J. Abascal et al., A novel prior- and motion-basedcompressed sensing method for small-animal respiratory gatedCT, Plos One, 11(3), 2016, e0149841.
  14. [14] H. Lee et al., Improved compressed sensing-based cone-beamCT reconstruction using adaptive prior image constraints,Physics in Medicine & Biology, 57(8), 2012, 2287–2307.
  15. [15] J. Chen et al., A hybrid architecture for compressive sensing3-D CT reconstruction, IEEE Journal on Emerging & SelectedTopics in Circuits & Systems, 2(3), 2012, 616–625.
  16. [16] H.Z. Wieczorek, The image quality of FBP and MLEM recon-struction, Journal of Physics in Medicine & Biology, 55(11),2010, 3161.
  17. [17] T. Gomi and Y. Koibuchi, Use of a total variation minimizationiterative reconstruction algorithm to evaluate reduced projec-tions during digital breast tomosynthesis, Biomed ResearchInternational, 2018, 1–14. doi: 10.1155/2018/5239082.
  18. [18] X. Lv, X. Wang, Z. Tian, et al., Design of automatic re-seeding system of air suction precision metering seeding de-vice for corn, Mechatronic Systems and Control, 48(3), 2020,doi:10.2316/J.2020.201-0038
  19. [19] J. Dey and M.A. King, Theoretical and numerical studyof MLEM and OSEM reconstruction algorithms for motioncorrection in emission tomography, IEEE Transactions onNuclear Science, 56(5), 2009, 2739–2749.
  20. [20] F. Arcadu, et al., A forward regridding method with minimaloversampling for accurate and efficient iterative tomographicalgorithms, IEEE Transactions on Image Processing, 25(3),2016, 1207–1218.5
  21. [21] J. Cai, P. Gao, Y. Wu, et al., Mobile robot navigationusing monocular visualinertial fusion, Mechatronic Systemsand Control, 49(1), 2021, doi:10.2316/J.2021.201-0100.
  22. [22] J. Zou and H. Zhang, New key point detection technologyunder real-time eye tracking, Mechatronic Systems and Control,47(2), 2019. doi:10.2316/J2019.201-2969.

Important Links:

Go Back