DEEP HASHING MULTI-LABEL IMAGE RETRIEVAL WITH ATTENTION MECHANISM, 372-381.

Wu Xie,∗ Mengyin Cui,∗ Manyi Liu,∗ Peilei Wang,∗ and Baohua Qiang∗∗

References

  1. [1] J.Y. Yang, B.H. Xia, T.L. Li, et al., Vibration-based structural damage identification: A review, International Journal of Robotics and Automation, 35(2), 2020, 123–131.
  2. [2] H. Shi and X.J. Xin, Fusion of panchromatic and multispectralimage based on PCA and NSCT, International Journal ofComputers and Applications, 34(4), 2005, 223–228.
  3. [3] G. Qiu, Indexing chromatic and achromatic patterns forcontent-based colour image retrieval, Pattern Recognition,35(8), 2002, 1675–1686.
  4. [4] S. Xu, W.S. Chou, and H.Y. Dong, A robust indoor localizationsystem integrating visual localization aided by CNN-basedimage retrieval with Monte Carlo localization, Sensors, 19(2),2019, 249.
  5. [5] C. Szegedy, W. Liu, Y.Q. Jia, et al., Going deeper withconvolutions, IEEE Computer Society Conf. on ComputerVision and Pattern Recognition, Boston, MA, 2015, 1–9.
  6. [6] Y. LeCun, B. Boser, J. Denker, et al., Backpropagation appliedto handwritten zip code recognition, Neural Computation,1(4), 2014, 541–551.
  7. [7] M.H. Zhao, C.Q. Hu, F.L. Wei, et al., Real-time underwaterimage recognition with FPGA embedded system for convolu-tional neural network, Sensors, 19(2), 2019, 350.
  8. [8] C.J. Gu, C.C. Gu, K.J. Wu, et al., CAD-based viewpointestimation of texture-less object for purposive perception usingdomain adaptation, International Journal of Robotics andAutomation, 34(6), 2019, 599 –609.
  9. [9] Y. Weiss, R. Fergus, and A. Torralba, Multidimensional spectralhashing, Proc. 12th European Conf. on Computer Vision,Florence, 2012, 340 –353
  10. [10] M. Datar, N. Immorlica, P. Indyk, et al., Locality-sensitivehashing scheme based on p-stable distributions, Proc. 20thAnnual Symposium on Computational Geometry, Brooklyn,NY, 2004, 2156–2162.
  11. [11] R. Xia, Y. Pan, H. Lai, et al., Supervised hashing for im-age retrieval via image representation learning, Proc. 28thNatl. Conf. on Artificial Intelligence, Quebec, QC, 2014,2156–2162.
  12. [12] H. Lai, Y. Pan, Y. Liu, et al., Simultaneous feature learningand hash coding with deep neural networks, Proc. IEEE Conf.on Computer Vision and Pattern Recognition, Boston, MA,2015, 3270–3278.
  13. [13] F. Zhao, Y.Z. Huang, L. Wang, et al., Deep semantic rankingbased hashing for multi-label image retrieval, Proc. IEEE Conf.on Computer Vision and Pattern Recognition, Boston, MA,2015, 1556–1564.
  14. [14] K. Lin, H.F. Yang, J.H. Hsiao, et al., Deep learning of binaryhash codes for fast image retrieval, Proc. IEEE Conf. onComputer Vision and Pattern Recognition Workshops, Boston,MA, 2015, 27–35
  15. [15] V. Mnih, N. Heess, A. Graves et al., Recurrent models of visualattention, Proc. 28th Annual Conf. on Neural InformationProcessing Systems 2014, Montreal, QC, 2014, 2204–2212.
  16. [16] H. Jie, S. Li, S. Gang, et al., Squeeze-and-Excitation net-works, IEEE Transactions on Pattern Analysis and MachineIntelligence, 42(8), 2017, 2011–2023.
  17. [17] H. Guo, K. Zheng, X.C. Fan, et al., Visual attention consis-tency under Image transforms for multi-label image classifi-cation, Proc. IEEE Conf. on Computer Vision and PatternRecognition, Beach, CA, 2019, 729 –739.
  18. [18] T.S. Chen, Z.X. Wang, G.B. Li, et al., Recurrent attentionalreinforcement learning for Multi-label image recognition, Proc.32nd AAAI Conf. on Artificial Intelligence, New Orleans, LA,2018, 6730 –6737.
  19. [19] J.L. Fu, H. Zheng, and M. Tao, Look closer to see better:Recurrent attention convolutional neural network for fine-grained image recognition, Proc. 30th IEEE Conf. on ComputerVision and Pattern Recognition, Honolulu, HI, 2017, 4476–4484.
  20. [20] H. Zheng, J.L. Fu, T. Mei, et al., Learning multi-attentionconvolutional neural network for fine-grained image recognition,Proc. IEEE Conf. on Computer Vision, Venice, 2017, 5219–5227.
  21. [21] H. Noh, A. Araujo, J. Sim, et al., Large-Scale image retrievalwith attentive deep Local Features, Proc. IEEE Int. Conf. onComputer Vision, Venice, 2017, 3476–3485.
  22. [22] S. Jin, H.X. Yao, X.S. Sun, et al., Deep saliency hashing forfine-grained retrieval, IEEE Transactions on Image Processing,29, 2020, 5336–5351.
  23. [23] L.W. Ge, J. Zhang, Y. Xia, et al., Deep spatial attention hashingnetwork for image retrieval, Journal of Visual Communicationand Image Representation, 63, 2019,102577–102577.
  24. [24] F. Wang, M.Q. Jiang, C. Qian, et al., Residual attentionnetwork for image classification, Proc. 30th IEEE Conf. onComputer Vision and Pattern Recognition, Honolulu, HI, 2017,3156–3164.
  25. [25] S.F. Zhang, L.Y. Wen, X. Bian, et al., Single-shot refinementneural network for object detection, Proc. IEEE Conf. onComputer Vision and Pattern Recognition, Salt Lake City,UT, 2018, 4203–4212.
  26. [26] C. Szegedy, W. Liu, Y.Q. Jia, et al., Going deeper withconvolutions, Proc. IEEE Computer Society Conf. on Com-puter Vision and Pattern Recognition, Boston, MA, 2015,1–9.
  27. [27] T.S. Chua, J.H. Tang, R. Hong, et al., NUS-WIDE: A real-worldweb image database from National University of Singapore,Proc. ACM International Conf. on Image and Video Retrieval,Santorini Island, Greece, 2009, 368–375.
  28. [28] M.J. Huiskes and M.S. Lew, The MIR Flickr retrieval evalu-ation, Proc. 1st Int. ACM Conf. on Multimedia InformationRetrieval, Vancouver, BC, 2008, 39–43.
  29. [29] Y. Weiss, A. Torralba, and R. Fergus, Spectral hashing, Proc.22nd Annual Conf. on Neural Information Processing Systems,Vancouver, BC, 2009, 1753–1760.
  30. [30] Y.C. Gong, S. Lazebnik, A. Gordo, et al., Iterative quantization:A procrustean approach to learning binary codes for large-scaleimage retrieval, IEEE Transactions on Pattern Analysis andMachine Intelligence, 35(12), 2013, 2916–2929.
  31. [31] W. Liu, J. Wang, R. Ji, et al., Supervised hashing withkernels, Proc. IEEE Conf. on Computer Vision and PatternRecognition, Providence, RI, 2012, 2074 –2081.
  32. [32] H. Zhu, M.S. Long, J.M. Wang, et al., Deep hashing networkfor efficient similarity retrieval, Proc. 30th AAAI Conf. onArtificial Intelligence, 2016, Phoenix, AZ, 2415–2421.
  33. [33] R. Baeza-Yates and B. Ribeiro-Neto, D. Mills, et al., Moderninformation retrieval (ACM Press, 463, 1999), 513.
  34. [34] K. J¨arvelin and J. Kek¨al¨aainen, Cumulated gain-based eval-uation of IR techniques, ACM Transactions on InformationSystems, 20(4), 2002, 422–446.

Important Links:

Go Back