AN IMPROVED GAN-BASED, 77-87.

SINGLE-PHASE TRANSFORMER-LESS

References

  1. [1] Renewable Energy Policy Network for the 21st Century. Re-newables 2017: Global Status Report. Available: http://www.ren21.net/gsr-2017/
  2. [2] H. Xiao and S. Xie, Leakage current analytical model andapplication in single phase transformerless photovoltaic grid-connected inverter, IEEE Transactions on ElectromagneticCompatibility, 52(4), 2010, 902–913.
  3. [3] L. Wang, Y. Shi, Y. Shi, R. Xie, and H. Li, Ground leakage cur-rent suppression in a 50 kW 5-level T-type transformerless PVinverter, in ECCE 2016 – IEEE Energy Conversion Congressand Exposition, Proceedings, Milwaukee, WI, 2016, 1–6.
  4. [4] S.A. Khan, Y. Guo, and J. Zhu, A high efficiency trans-formerless PV grid-Connected inverter with leakage currentsuppression, in Proc. 9th Int. Conf. on Electrical and ComputerEngineering, ICECE 2016, Dhaka, Bangladesh, 2017, 190–193.
  5. [5] L. Ma, F. Tang, F. Zhou, X. Jin, and Y. Tong, Leakagecurrent analysis of a single phase transformer-less PV inverterconnected to the grid, in 2008 IEEE Int. Conf. on SustainableEnergy Technologies, ICSET, Singapore, Singapore, 2008,285–289.
  6. [6] P. Kakosimos, A. Sarigiannidis, M. Beniakar, and A. Kladas,Investigation of transformerless topologies for renewable energyapplications eliminating leakage currents, in 9th MediterraneanConf. on Power Generation, Transmission, Distribution andEnergy Conversion, Athens, Greece, 2014, 75–80.
  7. [7] L. Zhang, K. Sun, Y. Xing, and M. Xing, H6 transformerlessfull-bridge PV grid-tied inverters, IEEE Transactions on PowerElectronics, 29(3), 2014, 1229–1238.
  8. [8] IEEE Standards Coordinating Committee 21, 1547a-2014 –IEEE standard for interconnecting distributed resources withelectric power systems – Amendment 1, Institute of Electricaland Electronics Engineers, Piscataway, NJ, 2014.
  9. [9] IEEE Std 929, IEEE recommended practice for utility inter-face of photovoltaic (PV) systems, Institute of Electrical andElectronics Engineers, Piscataway, NJ, 2000.
  10. [10] National Fire Protection Association, National Electrical Code:2008, National Fire Protection Association, Quincy, MA, 2007.
  11. [11] UL 1741, Standard for inverters, converters, controllers andinterconnection system equipment for use with distributed en-ergy resources, (Northbrook, Illinois: Underwriters laboratoriesinc., 2010).
  12. [12] Smart InverterWorking Group Recommendations, Recommen-dations for updating the technical requirements for invertersin distributed energy resources, (San Francisco, CA: CaliforniaPublic Utilities Commission, 2014).
  13. [13] Y. Shi, L. Wang, R. Xie, Y. Shi, and H. Li, A 60-kW 3-kW/kgFive-level T-Type SiC PV inverter with 99.2% peak efficiency,IEEE Transactions on Industrial Electronics, 64(11), 2017,9144–9154.
  14. [14] S. Saridakis, E. Koutroulis, and F. Blaabjerg, Optimization ofSiC-based H5 and conergy-NPC transformerless PV inverters,IEEE Journal of Emerging and Selected Topics in PowerElectronics, 3(2), 2015, 555–567.
  15. [15] F.M. Almasoudi, K.S. Alatawi, and M. Matin, High efficiencythree level transformerless inverter based on SiC MOSFETs forPV applications, in IEEE Int. Conf. on Electro InformationTechnology, Lincoln, NE, 2017, 617–622.
  16. [16] J. Popovi´c-Gerber, J.A. Oliver, N. Cordero, et al., Powerelectronics enabling efficient energy usage: Energy savingspotential and technological challenges, IEEE Transactions onPower Electronics, 27(5), 2012, 2338–2353.
  17. [17] L. Collins and J.K. Ward, Real and reactive power controlof distributed PV inverters for overvoltage prevention andincreased renewable generation hosting capacity, RenewableEnergy, 81, 2015, 464–471.
  18. [18] P.P. Barker and R.W. De Mello, Determining the impact ofdistributed generation on power systems. I. Radial distributionsystems, IEEE Power Engineering Society Summer Meeting,Seattle, WA, 2000, 1645–1656.
  19. [19] J.M. Carrasco, L.G. Franquelo, J.T. Bialasiewicz, et al., Power-electronic systems for the grid integration of renewable energysources: A survey, IEEE Transactions on Industrial Electron-ics, 53(4), 2006, 1002–1016.
  20. [20] Y. Xue, L. Chang, S.B. Kjær, J. Bordonau, and T. Shimizu,Topologies of single phase inverters for small distributed powergenerators: An overview, IEEE Transactions on Power Elec-tronics, 19(5), 2004, 1305–1314.
  21. [21] H. Xiao, S. Xie, Y. Chen, and R. Huang, An optimizedtransformerless photovoltaic grid-connected inverter, IEEETransactions on Industrial Electronics, 58(5), 2011, 1887–1895.
  22. [22] B. Chen, P. Sun, C. Liu, C.L. Chen, J.S. Lai, and W. Yu,High efficiency transformerless photovoltaic inverter with wide-range power factor capability, IEEE Applied Power Electron-ics Conference and Exposition – APEC, Orlando, FL, 2012,575–582.
  23. [23] P. Zacharias, R. Mallwitz, S.V. Ara´ujo, and B. Sahan, Invertercapable of providing reactive power, Google Patents, 2014.
  24. [24] K.S. Alatawi, F.M. Almasoudi, and M.A. Matin, Highly ef-ficient GaN-based single-phase transformer-less PV grid-tiedinverter, in 2017 North American Power Symposium, NAPS2017, Morgantown, WV, 2017, 1–6.
  25. [25] M. Victor, F. Greizer, S. Bremicker, and U. H¨ubler, Methodof converting a direct current voltage from a source of directcurrent voltage, more specifically from a photovoltaic sourceof direct current voltage, into an alternating current voltage,Google Patents, 2008.
  26. [26] W. Yu, J.S. Lai, H. Qian, and C. Hutchens, High-efficiencyMOSFET inverter with H6-type configuration for photovoltaicnonisolated AC-module applications, IEEE Transactions onPower Electronics, 26(4), 2011, 1253–1260.
  27. [27] D. Barater, C. Concari, G. Buticchi, E. Gurpinar, D. De,and A. Castellazzi, Performance evaluation of a three-levelANPC photovoltaic grid-connected inverter with 650-V SiCdevices and optimized PWM, IEEE Transactions on IndustryApplications, 52(3), 2016, 2475–2485.
  28. [28] P. Friedrichs, Silicon carbide power devices – status and upcom-ing challenges, in 2007 European Conf. on Power Electronicsand Applications, Aalborg, Denmark, 2007, 1–11.
  29. [29] M. Danilovic, Z. Chen, R. Wang, F. Luo, D. Boroyevich,and P. Mattavelli, Evaluation of the switching characteristicsof a gallium-nitride transistor, in IEEE Energy ConversionCongress and Exposition: Energy Conversion Innovation for a86Clean Energy Future, ECCE 2011, Proceedings, Phoenix, AZ,2011, 2681–2688.
  30. [30] Y. Cui, F. Xu, W. Zhang, et al., High efficiency data centerpower supply using wide band gap power devices, IEEE AppliedPower Electronics Conference and Exposition – APEC 2014,Fort Worth, TX, 2014, 3437–3442.
  31. [31] Z. Zhang, F. Wang, L.M. Tolbert, B.J. Blalock, and D.J.Costinett, Realization of high speed switching of SiC power de-vices in voltage source converters, in 2015 IEEE 3rd Workshopon Wide Bandgap Power Devices and Applications (WiPDA),Blacksburg, VA, 2015, 28–33.
  32. [32] S. Mao, R. Ramabhadran, J. Popovic, and J.A. Ferreira, Inves-tigation of CCM boost PFC converter efficiency improvementwith 600V wide band-gap power semiconductor devices, IEEEEnergy Conversion Congress and Exposition, ECCE 2015,Montreal, QC, Canada, 2015, 388–395.
  33. [33] R.A. Wood and T.E. Salem, Evaluation of a 1200-V, 800-AAll-SiC dual module, IEEE Transactions on Power Electronics,26(9), 2011, 2504–2511.
  34. [34] J. Popovic, J. Ferreira, J.D. van Wyk, and F. Pansier, Systemintegration of GaN converters – paradigm shift, 2014 8th Int.Conf. on Integrated Power Systems, Nuremberg, Germany,2014, 1–8.
  35. [35] A. Zapico, I. Gabiola, S. Ap´ı˜naniz, et al., SiC and Si transistorscomparison in boost converter, in 15th Int. Power Electronicsand Motion Control Conference and Exposition, EPE-PEMC2012 ECCE Europe, Novi Sad, Serbia, 2012, 1–7.
  36. [36] M. Khan, G. Simin, S. Pytel, et al., New developments ingallium nitride and the impact on power electronics, 2005IEEE 36th Power Electronics Specialists Conference, Recife,Brazil, 2005, 15–26.
  37. [37] S.L. Colino and R. Beach, Fundamentals of gallium nitridepower transistors, Power Efficient Conversion, 2011, 1–4.Available: https://www.digikey.ie/Web%20Export/Supplier%20Content/EfficientPowerConversion_917/PDF/EPC_FundamentalsofGNPT.pdf
  38. [38] Y. Xi, M. Chen, K. Nielson, and R. Bell, Optimization of thedrive circuit for enhancement mode power GaN FETs in DC-DC converters, IEEE Applied Power Electronics Conferenceand Exposition – APEC, Orlando, FL, 2012, 2467–2471.
  39. [39] D. Costinett, H. Nguyen, R. Zane, and D. Maksimovic, GaN-FET based dual active bridge DC-DC converter, Twenty-Sixth Annual IEEE Applied Power Electronics Conference andExposition (APEC), Fort Worth, TX, 2011, 1425–1432.

Important Links:

Go Back