MODEL REDUCTION OF MIMO SYSTEMS BASED ON BLOCK DIAGONAL CONTROLLABILITY CANONICAL FORMS

Zunhai Gao

References

  1. [1] W. Liang, H.B. Chen, G. He, and J. Chen, Model order reduc-tion based on dynamic relative gain array for MIMO systems,IEEE Transactions on Circuits and Systems II: Express Briefs,67(11), 2020, 2507–2511.
  2. [2] W.H. Schilders, H.A. Van der Vorst, and J. Rommes, ModelOrder Reduction: Theory, Research Aspects and Applications,13. Berlin: Springer, 2008. https://doi.org/10.1007/978-3-540-78841-6
  3. [3] Y.L. Jiang, Z.Z. Qi, and P. Yang, Model order reduction of linearsystems via the cross Gramian and SVD, IEEE Transactionson Circuits & Systems II: Express Briefs, 66(3), 2019,422–426.
  4. [4] M. Saiduzzaman, M.S. Islam, M.M. Uddin, and M.O. Gani,Comparative study on techniques of model order reduc-tion using rational Krylov subspace method, Journal ofInterdisciplinary Mathematics, 25(7), 2022, 1971–1978.
  5. [5] Z. Gao and Z. Chen, Model reduction method based on rationalcanonical form of system matrix and Krylov subspace, IOPConference Series: Materials Science and Engineering, 466(1),2018, 012045.
  6. [6] A.H. Bentbib, K. Jbilou, and Y.A. Kaouane, Computa-tional global tangential Krylov subspace method for modelreduction of large-scale MIMO dynamical systems, Journalof Scientific Computing, 75(3), 2018, 1614–1632. Doi:http://dx.doi.org/10.1007/s10915-017-0601-x
  7. [7] M. Vakilzadeh, R. Vatankhah, and M. Eghtesad, Trackingcontrol of suspended microchannel resonators based on Krylovmodel order reduction method, Journal of Vibration & Control,25(5), 2019, 1019–1030.
  8. [8] Z. Li and Y.L. Jiang, Parallel model order reduction basedon block discrete Fourier transform and Krylov subspace forparametric systems, International Journal of Systems Science,54(3), 2023, 594–606.
  9. [9] M.A. Hamadi, K. Jbilou, and A. Ratnani, A model reduc-tion method in large scale dynamical systems using an extended-rational block Arnoldi method, Journal of Applied Mathematics& Computing, 68(1), 2022, 271–293.
  10. [10] P. Singh, A. Sandhu, P. Nijhawan, and S.S. Bhutani, Modelreduction of linear time invariant SISO and MIMO systemsusing different optimal techniques, International Journal ofAdvanced Trends in Computer Science and Engineering, 9(5),2020, 7006–7012.
  11. [11] H.M.A. Abdalla, D. Casagrande, W. Krajewski, and U. Viaro,Loewner integer-order approximation of MIMO fractional-order systems, Applied Numerical Mathematics, 198, 2024,112–121.
  12. [12] J.C. Schulze, D.T. Doncevic, and A. Mitsos, Identificationof MIMO Wiener-type Koopman models for data-drivenmodel reduction using deep learning, Computers & ChemicalEngineering, 161, 2022, 107781.
  13. [13] H. Kumar, B. Gupta, P. Singh, and A. Sandhu,Genetic algorithm-based higher-order model reduction ofproton exchange membrane fuel cell, International Journal ofEnergy Research, 46(15), 2022, 24197–24207.
  14. [14] U. Zulfiqar, X. Du, Q.Y. Song, and V. Sreeram, On frequency-and time-limited µ H 2-optimal model order reduction,Automatica, 153, 2023, 111012.7
  15. [15] Z.X. Li, Y.L. Jiang, and K.L. Xu, Riemannian optimiza-tion model order reduction method for general linear port-Hamiltonian systems, IMA Journal of Mathematical Controland Information, 39(2), 2022, 590–608.
  16. [16] D.K. Sambariya and O. Sharma, Routh approximation: Anapproach of model order reduction in SISO and MIMO systems,Indonesian Journal of Electrical Engineering and ComputerScience, 2(3), 2016, 486–500.
  17. [17] D.K. Sambariya and R. Prasad, Stability equation methodbased stable reduced model of single machine infinite bussystem with power system stabilizer, International Journal ofElectronic and Electrical Engineering, 5(2), 2012, 101–106.
  18. [18] M. Jamshidi, Large-Scale Systems: Model and Control: North-Holland Series in Systems Science and Engineering, New York,NY: North Holland, 1983.
  19. [19] A.C. Antoulas, Approximation of Large-Scale DynamicalSystems. Philadelphia, PA: Society for Industrial and AppliedMathematics, 2005.
  20. [20] A.B. Diallo, M. Bensetti, C. Vollaire, L. Pichon, and A. Breard,Scale reduction for modeling and prototyping of inductivepower transfer system for EV applications, IEEE Transactionson Magnetics, 59(5), 2023, 1–4.
  21. [21] D. Butti, S.K. Mangipudi, and S. Rayapudi, Model order reduc-tion based power system stabilizer design using improved whaleoptimization algorithm, IETE Journal of Research, 69(4),2023, 2144–2163.
  22. [22] Z.H. Gao, M.Y. Chen, and X.J. Tong, Linear multi-inputsystem of the new block diagonal controllable canonical formsand its pole placement, Systems Engineering and Electronics,29(1),2007, 130–133.

Important Links:

Go Back