Shengnan Gao, Xiaoshun Li, and Yingying Liu
[1] S. Aly and W. Aly, DeepArSLR: A novel signer-independentdeep learning framework for isolated Arabic sign languagegestures recognition, IEEE Access, 8, 2020, 83199–83212. [2] S. Arshad, M. Shahzad, Q. Riaz, and M.M. Fraz, DPRNET:Deep 3D point based residual network for semantic segmen-tation and classification of 3D point clouds, IEEE Access, 7,2019, 68892–68904. [3] J.Y. Cha, H.I. Yoon, I.S. Yeo, K.H. Huh, and J.S. Han, Panopticsegmentation on panoramic radiographs: Deep learning-basedsegmentation of various structures including maxillary sinusand mandibular canal, Journal of Clinical Medicine, 10(12),2021, 14. [4] T. Cruz-Rojas, J.A. Franco, Q. Hernandez-Escobedo, D.Ruiz-Robles, and J.M. Juarez-Lopez, A novel comparison ofimage semantic segmentation techniques for detecting dust inphotovoltaic panels using machine learning and deep learning,Renewable Energy, 217, 2023, 23. [5] D. Di-Mauro, A. Furnari, G. Patan`e, S. Battiato, and G.M.Farinella, Scene adapt: Scene-based domain adaptation forsemantic segmentation using adversarial learning, PatternRecognition Letters, 136, 2020, 175–182. [6] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, P. Martinez-Gonzalez, and J. Garcia-Rodriguez, Asurvey on deep learning techniques for image and video semanticsegmentation, Applied Soft Computing, 70, 2018, 41–65. [7] S. Ghosh, N. Das, I. Das, and U. Maulik, Understanding deeplearning techniques for image segmentation, ACM ComputingSurveys, 52(4), 2019, 35. [8] S. Gnanapriya and K. Rahimunnisa, A hybrid deep learningmodel for real time hand gestures recognition, IntelligentAutomation and Soft Computing, 36(1), 2023, 1105–1119. [9] A. Kumar, J.J. Anand, and B.N.H. Kumar, Intrusivevideo oculographic device: An eye-gaze-based device forcommunication, Innovation and Emerging Technologies, 28(2)2022, 9 [10] Y.M. Guo, Y. Liu, T. Georgiou, and M.S. Lew, Areview of semantic segmentation using deep neural networks,International Journal of Multimedia Information Retrieval,7(2), 2018, 87–93. [11] Y.R. Guo and T. Chen, Semantic segmentation of RGBDimages based on deep depth regression, Pattern RecognitionLetters, 109, 2018, 55–64. [12] Y.M. Zhang, J. Sun, and J.Y. Qiao, Evaluation on Chineseagricultural mechanisation level in high-quality developmentstage based on improved AHP-critic, Mechatronic Systems andControl, 52(2), 2024, 121–129. [13] X. Han, Z. Dong, and B.S. Yang, A point-based deep learningnetwork for semantic segmentation of MLS point clouds, ISPRSJournal of Photogrammetry and Remote Sensing, 175, 2021,199–214. [14] W. Huang, Z.F. Shao, M.Y. Luo, P. Zhang, and Y.F.Zha, A novel multi-loss-based deep adversarial networkfor handling challenging cases in semi-supervised imagesemantic segmentation, Pattern Recognition Letters, 146, 2021,208–214. [15] R. Kemker, R. Luu, and C. Kanan, Low-Shot learning forthe semantic segmentation of remote sensing imagery, IEEETransactions on Geoscience and Remote Sensing, 56(10), 2018,6214–6223. [16] R. Kemker, C.S. Alvaggio, and C. Kanan, Algorithms forsemantic segmentation of multispectral remote sensing imageryusing deep learning, ISPRS Journal of Photogrammetry andRemote Sensing, 145, 2018, 60–77. [17] H.K. Kim, K.Y. Yoo, J.H. Park, and H.Y. Jung, Traffic lightrecognition based on binary semantic segmentation network,Sensors, 19(7), 2019, 15. [18] X.Y. Kong, X.H. Sun, Y.Z. Wang, R.Y. Peng, X.Y. Li, Y.H.Yang, and S.P. Tseng, Food calorie estimation system based onsemantic segmentation network, Sensors and Materials, 35(6),2023, 2013–2033. [19] T. Lattisi, D. Farina, and M. Ronchetti, Semantic segmentationof text using deep learning, Computing and Informatics, 41(1),2022, 78–97.8 [20] S.H. Lee, D.W. Lee, and M.S. Kim, A deep learning-based semantic segmentation model using MCNN andattention layer for human activity recognition, Sensors, 23(4),2023, 19. [21] C.M. Lin, C.Y. Tsai, Y.C. Lai, S.A. Li, and C.C. Wong,Visual object recognition and pose estimation based on adeep semantic segmentation network, IEEE Sensors Journal,18(22), 2018, 9370–9381. [22] F. Lin, Z.T. Yu, Q.N. Jin, and A.J. You, Semanticsegmentation and scale recognition-based water-level moni-toring algorithm, Journal of Coastal Research, 105, 2020,185–189. [23] C.C. Liu, Y.C. Zhang, P.Y. Chen, C.C. Lai, Y.H. Chen,J.H. Cheng, and M.H. Ko, Clouds classification from sentinel-2 imagery with deep residual learning and semantic imagesegmentation, Remote Sensing, 11(2), 2019, 16. [24] A. L´opez-Cifuentes, M. Escudero-Vi˜nolo, J. Besc´os, and A.Garc´ıa-Mart´ın, Semantic-aware scene recognition, PatternRecognition, 102, 2020, 15. [25] Y. Lyu, G. Vosselman, G.S. Xia, A. Yilmaz, and M.Y. Yang,UAVid: A semantic segmentation dataset for UAV imagery,ISPRS Journal of Photogrammetry and Remote Sensing, 165,2020, 108–119. [26] F. Magistri, J. Weyler, D. Gogoll, P. Lottes, J. Behley,N. Petrinic, and C. Stachniss, From one field to another-unsupervised domain adaptation for semantic segmentationin agricultural robotics, Computers and Electronics inAgriculture, 212, 2023, 10. [27] M. Markovic, R. Malehmir, and A. Malehmir, Diffractionpattern recognition using deep semantic segmentation, NearSurface Geophysics, 20(5), 2022, 507–518. [28] S. Matsuzaki, J. Miura, and H. Masuzawa, Multi-source pseudo-label learning of semantic segmentation for the scene recognitionof agricultural mobile robots, Advanced Robotics, 36(19), 2022,1011–1029. [29] Y.J. Mo, Y. Wu, X.N. Yang, F.L. Liu, and Y.J. Liao,Review the state-of-the-art technologies of semantic segmen-tation based on deep learning, Neurocomputing, 493, 2022,626–646. [30] F. Poux and R. Billen, Voxel-based 3D point cloud semanticsegmentation: Unsupervised geometric and relationship featur-ing vs. deep learning methods, ISPRS International Journalof Geo-Information, 8(5), 2019, 34. [31] J.K. Pu and W. Zhang, Electric vehicle fire trace recognitionbased on multi-task semantic segmentation, Electronics,11(11), 2022, 16. [32] R.D. Pu, G.Q. Ren, H.J. Li, W. Jiang, J.S. Zhang,and H.L. Qin, Autonomous concrete crack semantic seg-mentation using deep fully convolutional encoder-decodernetwork in concrete structures inspection, Buildings, 12(11),2022, 20. [33] M.A. Razzaq, I. Cleland, C. Nugent, and S. Lee, Semimput:Bridging semantic imputation with deep learning for complexhuman activity recognition, Sensors, 20(10), 2020, 23. [34] C. Redondo-Cabrera, M. Baptista-R´ıos, and R.J. L´opez-Sastre,Learning to exploit the prior network knowledge for weaklysupervised semantic segmentation, IEEE Transactions onImage Processing, 28(7), 2019, 3649–3661. [35] D. Ryu, K., Kitaguchi, K. Nakajima, Y. Ishikawa, Y. Harai,A. Yamada, Y. Lee, K. Hayashi, N. Kosugi, H. Hasegawa, N.Takeshita, Y. Kinugasa, and M. Ito, Deep learning-based vesselautomatic recognition for laparoscopic right hemicolectomy,Surgical Endoscopy and Other Interventional Techniques,38(1), 2023, 171–178. [36] M.U. Saeed, N. Dikaios, A. Dastgir, G. Ali, M.Hamid, and F. Hajjej, An automated deep learningapproach for spine segmentation and vertebrae recognitionusing computed tomography images, Diagnostics, 13(16),2023, 17. [37] H.K. Zhang, A new hybrid whale particle swarm optimisationalgorithm for robot trajectory planning and tracking control,Mechatronic Systems and Control, 52(1), 2024, 48–57.
Important Links:
Go Back