Cheng Yang, Yanwei Wang, Kuiye Chen, Xinwei Wang, and Zhennan Yang
[1] Moreno-Castro J, Oca˜na Guevara V S, Le´on Viltre L T, GallegoLandera Y, Cuaresma Zevallos O. Microgrid managementstrategies for economic dispatch of electricity using modelpredictive control techniques: A review. Energies, 2023, 16(16):5935-5948. [2] Guo W.H. Chain Fault Identification and Power Grid PlanningOptimisation in Power Systems Considering Multiple Scenarios,International Journal of Power and Energy Systems, 2024, 203:1-14. [3] Ahmed T., Ahmed A. L., and Souheil S. A New AdaptiveUnder-Frequency Load Shedding Scheme for Multi-Area PowerSystem, International Journal of Power and Energy Systems,2023, 203: 1-10. [4] Alonso A M, Matute G, Yusta J M, Coosemans T. Multi-stateoptimal power dispatch model for power-to-power systemsin off-grid hybrid energy systems: A case study in Spain.International journal of hydrogen energy, 2024, 52(5): 1045-1061. [5] Khaloie H, Vall´ee F, Lai C S, Toubeau J F, Hatziargyriou ND. Day-ahead and intraday dispatch of an integrated biomass-concentrated solar system: A multi-objective risk-controllingapproach. IEEE Transactions on Power Systems, 2021, 37(1):701-714. [6] Ishraque M F, Shezan S A, Rashid M M, Bhadra A B, HossainM A, Chakrabortty R K, Das S K. Techno-economic and powersystem optimisation of a renewable rich islanded microgridconsidering different dispatch strategies. IEEE Access, 2021,9(5): 77325-77340. [7] Li P, Hu J, Qiu L, Zhao Y, Ghosh B K. A distributed economicdispatch strategy for power–water networks. IEEE Transactionson Control of Network Systems, 2021, 9(1): 356-366. [8] Tang H, Wang S, Chang K, Guan J. Intra-day Dynamic OptimalDispatch for Power System Based on Deep Q-Learning. IEEJtransactions on electrical and electronic engineering, 2021,16(7): 954-964. [9] Maulidevi N U, Surendro K. SMOTE-LOF for noiseidentification in imbalanced data classification. Journal of KingSaud University-Computer and Information Sciences, 2022,34(6): 3413-3423.8 [10] Wang S, Dai Y, Shen J, Xuan J. Research on expansion andclassification of imbalanced data based on SMOTE algorithm.Scientific reports, 2021, 11(1): 24039-24041. [11] Dablain D, Krawczyk B, Chawla N V. DeepSMOTE: Fusingdeep learning and SMOTE for imbalanced data. IEEETransactions on Neural Networks and Learning Systems, 2022,34(9): 6390-6404. [12] Huang J, Chen P, Lu L, Deng Y, Zou Q. WCDForest: aweighted cascade deep forest model toward the classificationtasks. Applied Intelligence, 2023, 53(23): 29169-29182. [13] Chen J, Cui J, Lin C, Ge H. An Intelligent Fault DiagnosticMethod Based on 2D-gcForest and L ${} {\text {2, p}}$-PCA Under Different Data Distributions. IEEE Transactionson Industrial Informatics, 2022, 18(10): 6652-6662. [14] Chen Z, Wang T, Cai H, Mondal S K, Sahoo J P. Blb-gcforest:A high-performance distributed deep forest with adaptive sub-forest splitting. IEEE Transactions on Parallel and DistributedSystems, 2021, 33(11): 3141-3152. [15] Ma P, Wu Y, Li Y, Guo L, Jiang H, Zhu X, Wu X. HW-Forest:Deep forest with hashing screening and window screening. ACMTransactions on Knowledge Discovery from Data (TKDD),2022, 16(6): 1-24. [16] Akbari-Dibavar A, Mohammadi-Ivatloo B, Zare K, KhaliliT, Bidram A. Economic-emission dispatch problem in powersystems with carbon capture power plants. IEEE Transactionson Industry Applications, 2021, 57(4): 3341-3351. [17] Bi S, Mu L, Liu X. Deep multi-sequence multi-grained cascadeforest for tobacco drying condition identification. DryingTechnology, 2022, 40(9): 1832-1844. [18] Liu Y, Liu Z, Luo X, Zhao H. Diagnosis of Parkinson’s diseasebased on SHAP value feature selection. Biocybernetics andBiomedical Engineering, 2022, 42(3): 856-869. [19] Guan H, Zhang Y, Xian M, Cheng H D, Tang X. SMOTE-WENN: Solving class imbalance and small sample problems byoversampling and distance scaling. Applied Intelligence, 2021,51(7): 1394-1409. [20] Pradipta G A, Wardoyo R, Musdholifah A, Sanjaya I N H.Radius-SMOTE: a new oversampling technique of minoritysamples based on radius distance for learning from imbalanceddata. IEEE Access, 2021, 9(6): 74763-74777. [21] Zhang Z, Wang C, Chen S, Zhao Y, Dong X, Han X.Multitime scale co-optimised dispatch for integrated electricityand natural gas system considering bidirectional interactionsand renewable uncertainties. IEEE Transactions on IndustryApplications, 2022, 58(4): 5317-5327. [22] Liu X, Guo Y, Xie H, Tang H, Li B, Wang X, Tong X. Fastmachine learning-based extraction of the peak number fromICESat full-waveform data. Remote Sensing Letters, 2021,12(10): 1004-1014.
Important Links:
Go Back