THE PREDICTION OF THE WIND AND PHOTOVOLTAIC OUTPUT COEFFICIENTS OF ORDOS ZERO-CARBON INDUSTRIAL PARK BASED ON NEURAL NETWORKS. 11-18

Li Xiong, Kai Kang, Yunlong Zhang, Wen Zhang, Yunlong Zhang, and Chuansheng Cao

References

  1. [1] M.J. Ghadi, S.H. Gilani, A. Sharifiyan, and H. Afrakhteh, Anew method for short-term wind power forecasting, Proceeding17th Conference on Electrical Power Distribution, Tehran,2012, 1–6.
  2. [2] M. Chai, Z. Liu, K. He, and M. Jiang, Short-term predictionof photovoltaic power generation based on neural networkprediction model, Energy Science & Engineering, 11(1), 2023,97–111.
  3. [3] W. Sheng, K. Liu, D. Jia, and S. Chen, Short-term loadforecasting algorithm based on LST-TCN in power distributionnetwork, Energies, 15(15), 2022, 5584.
  4. [4] Y. Guo, Y. Li, X. Qiao, Z. Zhang, W. Zhou, Y. Mei, J.Lin, Y. Zhou, and Y. Nakanishi, BiLSTM multitask learning-based combined load forecasting considering the loads couplingrelationship for multienergy system, IEEE Transactions onSmart Grid, 13(5), 2022, 3481–3492.
  5. [5] S. Zhou, Y. Li, Y. Guo, X. Yang, M. Shahidehpour, W. Deng,Y. Mei, L. Ren, Y. Liu, T. Kang, and J. You, A load forecastingframework considering hybrid ensemble deep learning withtwo-stage load decomposition, IEEE Transactions on IndustryApplications, 60(3), 2024, 4568–4582.
  6. [6] L. Wang, D. Ren, X. Tian, Y. Zhang, and D. Hu, Pinewilt disease tree recognition on UAV images via samplingthreshold interval weighting method and double-head detection,International Journal of Robotics and Automation, 39(1), 2024,68–76.
  7. [7] H. Sun, Y. Zang, L. Wang, S. Ren, X. Wang, and X. Chen, Multi-scale cross fusion fine-grained network for identifying invasiveplants, International Journal of Robotics and Automation,39(5), 2024, 431–440.
  8. [8] D. Chicco, M.J. Warrens, and G. Jurman, The coefficient ofdetermination R-squared is more informative than SMAPE,MAE, MAPE, MSE and RMSE in regression analysisevaluation, Peerj Computer Science, 7, 2021, e623.
  9. [9] Y. Chen, X. Dai, M. Liu, D. Chen, L. Yuan, and Z. Liu,Dynamic ReLU, Proceeding European Conference on ComputerVision, Cham, 2020, 351–367.
  10. [10] W. Dong, H. Sun, J. Tan, Z. Li, J. Zhang, and H. Yang,Regional wind power probabilistic forecasting based on animproved kernel density estimation, regular vine copulas, andensemble learning, Energy, 238, 2022, 122045.
  11. [11] N. Yang, Y. Huang, D. Hou, S. Liu, D. Ye, B. Dong, and Y. Fan,Adaptive nonparametric kernel density estimation approachfor joint probability density function modeling of multiple windfarms, Energies, 12(7), 2019, 1356.
  12. [12] G. Chen, B. Tang, X. Zeng, P. Zhou, P. Kang, and H.Long, Short-term wind speed forecasting based on long short-term memory and improved BP neural network, InternationalJournal of Electrical Power & Energy Systems, 134, 2022,107365.
  13. [13] K.C. Sharma, A. Gupta, and R. Bhakar, Wind powerscenario generation considering spatiotemporal correlations:A distribution free hybrid VARMA-copula approach, SmartGrids and Sustainable Energy, 8(4), 2023, 17.
  14. [14] J. Chen, C. Mao, Z. Liu, C. Ma, G. Sha, Q. Duan, H. Fan, S.Qiu, and D. Wang, Stochastic planning of integrated energysystem based on correlation scenario generation method viaCopula function considering multiple uncertainties in renewableenergy sources and demands, Institution of Engineeringand Technology Renewable Power Generation, 17(12), 2023,2978–2996.

Important Links:

Go Back