Local Linear PID Controllers for Nonlinear Control

J. Lan, J. Cho, D. Erdogmus, J.C. Principe, M.A. Motter, and J. Xu

References

  1. [1] O. Nelles, Nonlinear system identification (New York: Springer,2001).
  2. [2] I.J. Leontaritis & S.A. Billings, Input-output parametric modelsfor nonlinear systems, Part 1: Deterministic nonlinear systems,International Journal of Control, 41(2), 1985, 303–328.
  3. [3] K.S. Narendra & K. Parthasarathy, Identification and controlof dynamical systems using neural networks, IEEE Trans. onNeural Networks, 1(1), 1990, 4–27. doi:10.1109/72.80202
  4. [4] T.A. Johansen & B.A. Foss, Constructing NARMAX modelsusing ARMAX models, International Journal of Control, 58(5),1993, 1125–1153. doi:10.1080/00207179308923046
  5. [5] X. Ni, M. Verhaegen, A.J. Krijgsman, & H.B. Verbruggen, Newmethod for identification and control of nonlinear dynamicsystems, Engineering Applications of Artificial Intelligence,9(3), 1996, 231–243. doi:10.1016/0952-1976(96)00015-2
  6. [6] D.M. Walker, N.B. Tufillaro, & P. Gross, Radial-basis modelsfor feedback systems with fading memory, IEEE Trans. onCircuits and Systems, 48(9), 2001, 1147–1151. doi:10.1109/81.948445
  7. [7] B.S. Kim & A.J. Calise, Nonlinear flight control using neuralnetworks, Journal of Guidance, Control, and Dynamics, 20(1),1997, 26–33.
  8. [8] C.H. Lee & M.J. Chung, Gain-scheduled state feedback controldesign technique for flight vehicles, IEEE Trans. on Aerospaceand Electronic Systems, 37(1), 2001, 173–182. doi:10.1109/7.913676
  9. [9] R.C. Dorf & R.H. Bishop, Modern control systems, 8th ed.(New York: Addison Wesley, 1998).
  10. [10] J.S.R. Jang, ANFIS: Adaptive-network-based fuzzy inferencesystem, IEEE Trans. on Systems, Man and Cybernetics, PartB, 23(3), 1993, 665–685. doi:10.1109/21.256541
  11. [11] J. Lan, J.C. Principe, & M.A. Motter, Identification of dynamical systems using GMM with VQ initialization, Proc. IJCNN’03, 1, 2003, 764–768. doi:10.1109/IJCNN.2003.1223478
  12. [12] J.C. Principe, L. Wang, & M.A. Motter, Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control, Proc. IEEE, 86(11), 1998, 2240–2258. doi:10.1109/5.726789
  13. [13] T. Kohonen, Self-organizing maps (New York: Springer, 1995).
  14. [14] G.J. Mclachlan & D. Peel, Finite mixture models (New York:Wiley, 2001).
  15. [15] J. Stark, D.S. Broomhead, M.E. Davies, & J. Huke, Takensembedding theorems for forced and stochastic systems, Nonlinear Analysis, Theory Methods, and Applications, 30(8), 1997, 5303–5314. doi:10.1016/S0362-546X(96)00149-6
  16. [16] M. Casdagli, Nonlinear prediction of chaotic time series, Physica D, 35(3), 1989, 335–356. doi:10.1016/0167-2789(89)90074-2
  17. [17] F. Takens, On numerical determination of the dimension of an attractor, in D. Rand & L.S. Young (Eds), Dynamical systemsand turbulance, Warwick 1980, Lecture Notes in Mathematics,vol. 898, (Berlin: Springer-Verlag, 1981), 366–381.
  18. [18] D.T. Magill, Optimal adaptive estimations of sampled stochastic processes, IEEE Trans. on Automation and Control, AC-10, 1965, 434–439. doi:10.1109/TAC.1965.1098191
  19. [19] D.G. Lainiotis, Partitioning: A unifying framework for adaptivesystems—I: Estimation—II: Control, Proc. IEEE, 64, 1976,1126–1143, 1182–1197.
  20. [20] B. Martensson, Adaptive stabilization, doctoral diss., LundInstitute of Technology, Lund, Sweden, 1986.
  21. [21] K.S. Narendra & J. Balakrishnan, Adaptive control usingmultiple models, IEEE Trans. on Automatic Control, 4(2),1997, 171–187. doi:10.1109/9.554398
  22. [22] R.A. Jacobs, M.I. Jordan, S.J. Nowlan, & G.E. Hinton, Adaptive mixtures of local experts, Neural Computation, 3, 1991, 79–87. doi:10.1162/neco.1991.3.1.79
  23. [23] R. Murray-Smith & T.A. Johansen, Multiple model approachesto modeling and control (New York: Taylor & Francis, 1997).
  24. [24] K.S. Narendra & C. Xiang, Adaptive control of discrete-timesystems using multiple models, IEEE Trans. on AutomaticControl, 45(9), 2000, 1669–1686. doi:10.1109/9.880617
  25. [25] A.S. Morse, Supervisory control of families of linear set-pointcontroller, Part 1: Exact matching, IEEE Trans. on AutomaticControl, 42, 1996, 1413–1431. doi:10.1109/9.539424
  26. [26] M.A. Motter, Control of the NASA Langley 16-foot TransonicTunne; with the Self-Organizing Feature Map, doctoral diss.,University of Florida, Gainesville, FL, 1997.
  27. [27] G. Thampi, J.C. Principe, M.A. Motter, J. Cho, & J. Lan,Multiple model based flight control design, Proc. MWSCAS’02,vol. 3, Tulsa, OK, 2002, 133–136.
  28. [28] J. Cho, J. Lan, G. Thampi, J.C. Principe, & M.A. Motter,Identification of aircraft dynamics using a SOM and local linearmodels, Proc. MWSCAS’02, vol. 2, Tulsa, OK, 2002, 148–151.
  29. [29] S. Chen & S. Billings, Representations of non-linear systems:The NARMAX model, International Journal of Control, 49(3),1989, 1013–1032.
  30. [30] R.E. Brown, G.N. Maliotis, & J.A. Gibby, PID self-tuningcontroller for aluminum rolling mill, IEEE Trans. on IndustryApplications, 29(3), 1993, 578–583. doi:10.1109/28.222430
  31. [31] K.M. Vu, Optimal setting for discrete PID controllers, IEEProc.-D, 139(1), 1992, 31–40.
  32. [32] J. Bao, J.F. Forbes, & P.J. McLellan, Robust MultiloopPID controller design: A successive semidefinite programmingapproach, Industrial and Engineering Chemistry Research, 38,1999, 3407–3419. doi:10.1021/ie980746u
  33. [33] X. He & H. Asada, A new method for identifying ordersof input-output models for nonlinear dynamic systems, Proc.ACC, 1993, 2520–2524.
  34. [34] S. Haykin, Neural networks: A comprehensive foundation (Englewood Cliffs, NJ: Prentice-Hall, 1998).

Important Links:

Go Back